API src

Found 4436 results.

Similar terms

s/trinkwasserversorung/Trinkwasserversorgung/gi

Wasserversorgungsanlagen NRW

Wasserversorgungsanlagen NRW – csv-Datei mit anonymisierten Geodaten (UTM Koordinaten) von Wasserversorgungsanlagen nach Buchstabe a) - Stammdaten Wasserversorgungsanlagen. Gemäß § 3 TrinkwV (2001) sind „Wasserversorgungsanlagen“ nach Buchstabe a) zentrale Wasserwerke: Anlagen einschließlich dazugehörender Wassergewinnungsanlagen und eines dazugehörenden Leitungsnetzes, aus denen pro Tag mindestens 10 Kubikmeter Trinkwasser entnommen oder auf festen Leitungswegen an Zwischenabnehmer geliefert werden oder aus denen auf festen Leitungswegen Trinkwasser an mindestens 50 Personen abgegeben wird. Zum Schutz der kritischen Infrastruktur werden die vorliegenden UTM-Koordinaten anonymisiert, indem die letzten beiden Stellen der East- und North-Values nicht ausgegeben werden (diese Stellen werden durch ein ‚X‘ ersetzt).

Heilquellenschutzgebietszone

Heilquellenschutzgebiete können im Einzugsgebiet von Heilquellen zu deren besonderem Schutz ausgewiesen sein. Erfasst und fortgeschrieben werden die nach § 53 WHG und § 45 WG ausgewiesenen Heilquellenschutzgebiete für Heilquellen. Sie bestehen aus verschiedenen Heilquellenschutzgebietszonen (QSG-Zonen), die nach qualitativen oder quantitativen Aspekten eingeteilt sein können. Qualitative Schutzzonen - Zone I (Fassungsbereich) - Zone II (Engere Schutzzone) - Zone III (Weitere Schutzzone - innerer Bereich) - Zone IV (Weitere Schutzzone äußerer Bereich) Quantitative Schutzzonen - Zone A (Innere Zone) - Zone B (Äußere Zone) - Zone C - Zone D Aus den QSG-Zonen wird das Heilquellenschutzgebiet als Umring gebildet. Differenziert wird nach festgesetzten, vorläufig angeordneten und nicht festgesetzten Gebieten. Der im Internet veröffentlichte Datenbestand enthält die rechtskräftig festgesetzten und vorläufig angeordneten Quellenschutzgebiete in Baden-Württemberg. Für die Geometriedaten dient das Amtliche Liegenschaftskatasterinformationssystem (ALKIS) als Erfassungsgrundlage.

Klimaerlebnisbaum - Rennweg - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Rennweg sind mehrere Bäume der Art Tilia mit Sensoren versehen, die bis März 2024 Daten sammelten. Die eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 12.03.2024 10 Uhr](https://opendata.smartandpublic.eu/datasets/a307c522-7643-446f-be82-fc1113097770?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Trinkwassermessdaten 2018-2020 NRW

Trinkwassermessdaten – Berichtspflichtige Ergebnisse der Trinkwasseruntersuchungen von 2018 bis 2020 in NRW (als csv-Dateien und SQLITE-Datenbanken). Gemäß TrinkwV §21 übermitteln die Gesundheitsämter einmal jährlich die Angaben zur Trinkwasserqualität für Wasserversorgungsgebiete, in denen mindestens 10 m³ Trinkwasser/Tag bzw. mindestens 50 Personen versorgt werden, für das vorausgegangene Kalenderjahr an das LANUK. Das Dokument „Hinweise zu den bereitgestellten Trinkwasserdaten“ enthält Angaben zum Umfang und Messzeitraum der bereitgestellten Daten, wie auch technische Details zu den Datenformaten und dem Aufbau der Tabellen.

Wasserentnahme Landkreis Lüneburg

Jede Entnahme von Wasser aus öffentlichen Gewässern stellt eine Benutzung dar. Der Entscheid über eine rechtmäßige Nutzung bspw. für die Trinkwasserversorgung, Feldberegnung oder gewerbliche bzw. industrielle Nutzung obliegt der Unteren Wasserbehörde und muss per Antrag eingeholt werden.

Wasserschutzgebiete Landkreis Lüneburg

Nach § 51 des Wasserhaushaltsgesetzes (WHG) werden Wasserschutzgebiete (WSG) im Interesse der öffentlichen Wasserversorgung durch behördliche Verordnungen festgesetzt. Dies erfolgt in Niedersachsen überwiegend zur Sicherstellung ausreichender Mengen und zum Schutz des zu Trinkwasserzwecken genutzten Grundwassers vor schädlichen Einwirkungen im betreffenden Einzugsgebiet. Daher gelten für die jeweiligen Wasserschutzgebiete gemäß § 52 WHG erforderliche Schutzbestimmungen, durch die bestimmte Handlungen verboten oder nur eingeschränkt zulässig erklärt werden.

Wasserschutzgebiete (Landkreis Göttingen)

Rechtsgrundlage: Nach § 91 des Niedersächsischen Wassergesetzes (NWG) in Verbindung mit § 51 des Wasserhaushaltsgesetzes (WHG) können Wasserschutzgebiete (WSG) im Interesse der öffentlichen Wasserversorgung bzw. zum Wohl der Allgemeinheit festgesetzt werden, um das Grundwasser im Gewinnungs- bzw. Einzugsgebiet einer Grundwasserentnahme vor nachteiligen Einwirkungen zu schützen. Flächen aller ausgewiesenen Wasserschutzgebiete im Kreisgebiet mit Schutzzonen von I bis III. Schutzzone I = Brunnen, Schutzzone II = nähere Umgebung um den Brunnen, Schutzzone III = weitere Schutzzone. Um den Schutz des Grundwassers/Trinkwassers zu garantieren, sieht die jeweilige Verordnung in den einzelnen Schutzzonen Einschränkungen der Nutzung (z.B. Ausbringen von Dünge- und Spritzmitteln, Materiallagerung, Bebauung) vor. WSG "Adelebsen", "Alte Riefensbeek", "Bad Sachsa", "Barbis", "Blümer Berg, Klus, Mielenhausen", "Bramwald", "Bühren", "Dankelshausen", "Eisdorf", "Friedland-Reckershausen", "Gelliehausen", "Gronespring", "Hattorf", "Hettensen", "Kleinalmerode", "Lenglern", "Lonau", "Magdeburger Stollen", "Moosgrund", "Nieste", "Oberode", "Reiffenhausen", "Reinhausen", "Renshausen", "Sattenhausen", "Scheden", "Sieber", "Sösetalsperre", "Stegemühle", "Steinatal", "Tiefenbrunn", "Uschlag", "Weendespring", "Witzenhausen", "Wulften", "Ziegenhagen", "Zorge".

Bebauungsplan Billstedt 103 1. Änderung Hamburg

§ 2 Nummer 3 der Verordnung über den Bebauungsplan Billstedt 103 vom 18. September 2007 (HmbGVBl. S. 299) erhält folgende Fassung: 3. Für die Beheizung und die Wasserversorgung gilt: 3.1 Neu zu errichtende Gebäude sind für Beheizung und Warmwasserversorgung an ein Wärmenetz anzuschließen und über dieses zu versorgen. Die Wärme muss überwiegend aus erneuerbaren Energien, Abwärme oder Kraft-Wärme-Kopplung erzeugt werden. 3.2 Vom Anschluss- und Benutzungszwang nach Nummer 3.1 wird ausnahmsweise abgesehen, wenn der berechnete Jahres-Heizwärmebedarf der Gebäude nach der Energieeinsparverordnung vom 24. Juli 2007 (BGBl. I S. 1519), geändert am 29. April 2009 (BGBl. I S. 954), den Wert von 15 kWh (m2a) Nutzfläche nicht übersteigt. 3.3 Vom Anschluss- und Benutzungsgebot nach Nummer 3.1 kann auf Antrag befreit werden, soweit die Erfüllung der Anforderungen im Einzelfall wegen besonderer Umstände zu einer unbilligen Härte führen würde. Die Befreiung kann zeitlich befristet werden."

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

1 2 3 4 5442 443 444