Within the MAPESI project (FKZ 3707 64 200) deposition flux maps are determined for Germany based on a combination of observations and model results. Wet deposition is based on an interpolation scheme of observed fluxes. For the determination of dry deposition, however, we have to rely on a chemistry transport model which includes a dry deposition module. The dry deposition flux can not be monitored directly, because flux measurements are very expensive and the variability in space and time of the deposition fluxes is generally high for most of the atmospheric substances. Veröffentlicht in Texte | 14/2013.
Die Biodiversität in Europa ist durch den Eintrag von Schwefel- und Stickstoffverbindungen in die Ökosysteme gefährdet. Innerhalb des PINETI Projektes werden daher die atmosphärischen Einträge dieser Schad- und Nährstoffe für Deutschland für die Jahre 2008 und 2009 ermittelt. Die trockenen, nassen und feuchten Einträge von NHx, NOy, SOx und die Einträge der basischen Kationen Ca2+, Mg2+, K+ und Na+ werden berechnet und zur Gesamtdeposition aufsummiert. Anhand der Ergebnisse und den Critical Load werden die Überschreitungen der Critical Load für empfindliche Ökosysteme berechnet. <P>Im Folgenden wird eine Zusammenfassung der verwendeten Methoden und der Projektergebnisse präsentiert. Nach einer kurzen Einleitung werden zunächst die Eingangsdaten zur Ermittlung der atmosphärischen Einträge erläutert. Anschließend werden die Methoden zur Bestimmung der trockenen, nassen und feuchten Deposition jeweils kurz beschrieben. Die erstellten Karten zur Gesamtdeposition werden präsentiert und die Ergebnisse mit den Resultaten des Vorgängerprojektes MAPESI und Ergebnissen des EMEP Modells verglichen. Im Anschluss werden die, innerhalb des Projektes durchgeführten Modellweiterentwicklungen und Modellevaluationen zusammenfassend beschrieben und weitere mögliche Modellentwicklungen benannt und empfohlen. Abschließend wird die Bewertung des Eintrages in Bezug auf Risiken für terrestrische Ökosysteme zusammenfassend dargestellt. Das Prinzip der Critical Load wird kurz erläutert und die zeitlichen Trends der Überschreitungen der Critical Load für Versauerung und für Eutrophierung werden präsentiert.<BR>Quelle: Forschungsbericht
Simulating the ozone variability at regional scales using chemistry transport models (CTMs) remains a challenge. We designed a multi-model intercomparison to evaluate, for the first time, four regional CTMs on a national scale for Germany. Simulations were conducted with LOTOS-EUROS, REM-CALGRID, COSMO-MUSCAT and WRF-Chem for January 1st to December 31st, 2019, using prescribed emission information. In general, all models show good performance in the operational evaluation with average temporal correlations of MDA8 O3 in the range of 0.77-0.87 and RMSE values between 16.3 (micro)g m-3 and 20.6 (micro)g m-3. On average, better models' skill has been observed for rural background stations than for the urban background stations as well as for springtime compared to summertime. Our study confirms that the ensemble mean provides a better model-measurement agreement than individual models. All models capture the larger local photochemical production in summer compared to springtime and observed differences between the urban and the rural background. We introduce a new indicator to evaluate the dynamic response of ozone to temperature. During summertime a large ensemble spread in the ozone sensitivities to temperature is found with (on average) an underestimation of the ozone sensitivity to temperature, which can be linked to a systematic underestimation of mid-level ozone concentrations. During springtime we observed an ozone episode that is not covered by the models which is likely due to deficiencies in the representation of background ozone in the models. We recommend to focus on a diagnostic evaluation aimed at the model descriptions for biogenic emissions and dry deposition as a follow up and to repeat the operational and dynamic analysis for longer timeframes. © 2023 The Authors
The study investigates spatial and temporal trends of airborn deposition of arsenic, cadmium, chromium, copper, lead, mercury, nickel, vanadium and zinc in Germany using modelled and measured data, among these results of bioaccumulation surveys. A risk assessment is provided by comparing the results with environment quality targets and criteria from regulations.
Aktuelle Arbeiten - Endlager Morsleben Übersicht über die wesentlichen Arbeiten im März (Kalenderwochen 9 bis 13/2022) Sichere Stilllegung des Endlagers Die BGE muss die Funktionalität von Stilllegungsmaßnahmen aufzeigen. Für die vertieften Planungen müssen Untersuchungen durchgeführt werden. Bergleute führen Vorversuche mit dem Baustoff für das geplante Demonstrationsbauwerk im Anhydrit durch. Dazu wurden etwa zehn Kubikmeter des trockenen Baustoffs im Baustofflager auf der 2. Ebene (Sohle) von Schacht Bartensleben angeliefert. In den Vorversuchen wird getestet, wie sich der Baustoff im Handling unter Tage verhält und wie sich dabei die Staubentwicklung auf die Frischluftversorgung (Bewetterung) unter Tage auswirkt. Bergleute begleiten den sicheren Aufbau der semimobilen Baustoffanlage auf der 2. Sohle von Schacht Bartensleben. Die Baustoffanlage wurde im Dezember 2021 mit insgesamt vier LKWs auf dem Betriebsgelände angeliefert. Nach dem aufwendigen Transport der Einzelteile nach unter Tage ist nun auch der Aufbau der Anlage annähernd abgeschlossen. Gewährleistung der Betriebssicherheit Bergleute müssen das Endlager nach Atom- und Bergrecht betreiben. Bergleute führen eine Beraubesprengung im Abbau 11 auf der 2. Ebene (Sohle) von Schacht Bartensleben durch. Die Beraubesprengung ist Teil umfassender Firstsicherungsarbeiten. Als Firste wird im Bergbau die Decke eines Grubenbaus bezeichnet. Nach Bergrecht muss regelmäßig überprüft werden, ob die Firste allen Sicherheitsanforderungen standhält und damit die Kopfsicherheit der Personen unter Tage gewährleistet ist. Mitarbeiter*innen führen die jährliche Übung mit der mobilen Ersatzstromanlage (MESA) und der Hilfsfahrtanlage von Schacht Bartensleben durch. Die Übung dient der Sicherheit der Mitarbeiter*innen unter Tage. Sollte es durch einen Spannungsausfall dazu kommen, dass Fördermaschine, Hauptgrubenlüfter und weitere Wettertechnik ausfallen, kann die Hilfsfahrtanlage mit der MESA betrieben werden, um Mitarbeiter*innen aus dem Bergwerk nach über Tage zu transportieren. Erhalt der Stilllegungsfähigkeit und Optimierung des Betriebes Mittel- bis langfristig muss die BGE die Stilllegungsfähigkeit des Endlagers erhalten und den Betrieb optimieren. Mitarbeiter*innen des Tagesbetriebs begleiten den Aufbau einer neuen Containeranlage auf dem übertägigen Betriebsgelände. Weitere Informationen dazu finden Sie in unserem Einblick. Dienstleister führen umfangreiche Erdarbeiten auf dem Bauplatz der geplanten neuen Verwaltung durch. Nachdem der Bauplatz zunächst auf Straßenniveau abgesenkt wurde, wird der Bereich nun an die bestehende Infrastruktur des Betriebsgeländes angeschlossen. Im Gespräch Im Rahmen unserer Öffentlichkeitsarbeit können sich alle interessierten Bürger*innen über das Endlager Morsleben informieren und mit uns ins Gespräch kommen. Darüber hinaus tauschen wir uns mit Wissenschaftler*innen fachlich aus und lassen diese Rückmeldungen in unsere Arbeit einfließen. Am Donnerstag, den 3. März 2022, organisieren die Mitarbeiter*innen der Infostelle die erste „Betrifft: Morsleben“ des Jahres. Vor rund 80 Zuschauer*innen berichten die Referenten der BGE im Livestream über die Arbeiten im Jahr 2021 und die anstehenden Aufgaben 2022 am Projekt Morsleben. Im Anschluss an den Vortrag werden die Fragen der Zuschauer*innen beantwortet und diskutiert. Eine Aufzeichnung der Veranstaltung steht auf dem YouTube-Kanal der BGE (externer Link) zur Verfügung. Einen ausführlichen Nachbericht zur Veranstaltung sowie alle Fragen und Antworten finden Sie auf unserer Internetseite. Meldepflichtiges Ereignis Betriebsstörungen oder Störfälle bis zu Unfällen sind den zuständigen Aufsichtsbehörden zu melden. Grundlage ist die Atomrechtliche Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) in Verbindung mit der Meldeordnung des ERAM . Am 15. März 2022 wird während der Erstellung der Jahresberichte zur Umgebungsüberwachung ein Fehler festgestellt: Die seit Januar 2021 verwendete Berechnungsvorschrift zur Ermittlung von Gesamt-Beta-Aktivitätskonzentrationen in Aerosolen führt zu Messwerten, die circa ein Viertel der tatsächlichen Werte betragen. Der Fehler in der Berechnungsvorschrift entsteht bei einer Überarbeitung der Arbeitsvorschrift zur Überwachung der Radioaktivität in Aerosolen. Die überarbeitete Arbeitsvorschrift trat zum 1. Januar 2021 in Kraft. Als Maßnahme werden die Werte des gesamten letzten Jahres unter Verwendung der korrekten Berechnungsformel neu ermittelt sowie alle betroffenen Monats- und Quartalsberichte aus dem Jahr 2021 korrigiert. Im Ergebnis hatten die fehlerhaften Berechnungen keine radiologischen Auswirkungen. Die Ermittlung der Gesamt-Beta-Aktivitätskonzentration ist Teil der Umgebungsüberwachung im Strahlenschutz. Dazu werden an drei Standorten in der Umgebung des Endlagers Morsleben Filter mit Aerosolen eingesetzt und regelmäßig ausgemessen: An der Immissionsmessstelle Schacht Bartensleben, an einer Referenzmessstelle sowie an der nachweislich ungünstigsten Einwirkungsstelle für Inhalation und trockene Deposition am Schacht Marie. Am 23. März 2022 führt ein technischer Defekt zum teilweisen Ausfall der Leit- und Nachrichtentechnik der Zentralen Warte. Der Defekt liegt in der Signalanbindung auf der 2. Ebene (Sohle) von Schacht Bartensleben in der Verbindungsstrecke nach Schacht Marie. In der Folge werden folgende Signale nicht an die Zentrale Warte übertragen: Torsignalisierungen der Wettertore am Barriereübergang zum Schacht Marie und Meldungen der Gasspurenanalyse in der Verbindungsstrecke. Die Überwachung am Barriereübergang ist durch das Zutrittskontrollsystem ohne Einschränkungen weiterhin gewährleistet. Die Messwerte der Gasspurenanalyse werden arbeitstäglich vor Ort abgelesen. Als Maßnahme wird eine neue Baugruppe zur Signalübertragung installiert und über das neue LWL-Kabelnetzwerk angeschlossen. Keines der meldepflichtigen Ereignisse hatte Personenschaden zur Folge. Es erfolgten N-Meldungen an die zuständigen Aufsichtsbehörden im vorgeschriebenen Zeitraum. Einblick Mit Hilfe eines Baukrans wurden die 24 Bürocontainer auf dem Betriebsgelände angeliefert und aufgebaut. Durch die immer weiter voranschreitenden Planungen und Arbeiten in der Stilllegungsplanung werden auf dem Betriebsgelände des Endlagers Morsleben dringend zusätzliche Räumlichkeiten für Schreibtischarbeitsplätze benötigt. Um die Zeit bis zur Fertigstellung des neuen Verwaltungsgebäudes zu überbrücken, wurden Anfang März 24 Bürocontainer geliefert. In diesen werden zukünftig die Organisationseinheiten der Markscheiderei, des Werkschutzes und ein Besprechungszimmer untergebracht. Sobald die neuen Räumlichkeiten bezogen sind, ist das erste betriebliche Ziel für das Jahr 2022 erreicht: Die Inbetriebnahme der Containeranlage. Dieser Meilenstein wurde am 4. März 2022 mit einem Richtfest gefeiert. Alle Monatsberichte zum Endlager Morsleben im Überblick Meldepflichtige Ereignisse im Endlager Morsleben - BGE
Within the MAPESI project (FKZ 3707 64 200) deposition flux maps are determined for Germany based on a combination of observations and model results. Wet deposition is based on an interpolation scheme of observed fluxes. For the determination of dry deposition, however, we have to rely on a chemistry transport model which includes a dry deposition module. The dry deposition flux can not be monitored directly, because flux measurements are very expensive and the variability in space and time of the deposition fluxes is generally high for most of the atmospheric substances.
Luftschadstoffe, die aus unterschiedlichen Quellen, wie z. B. der Industrie oder dem Verkehr, emittiert werden, gelangen über Transmission zu Menschen, Tieren und Pflanzen. Dort können sie Wirkungen entfalten. Sie können auch einen Einfluss auf Materialien haben und das Klima beeinflussen. Die Wirkungen von Luftverunreinigungen auf den Menschen über die Nahrung werden über verschiedene Bioindikationsverfahren mit Pflanzen ermittelt. Eintrag von Luftschadstoffen Ansicht auf Duisburg Schwelgern vom Rhein aus, Bild: LANUV In Nordrhein-Westfalen werden die Einträge verschiedener Luftschadstoffe in Pflanzen ermittelt. Dazu zählen beispielsweise Schwermetalle und organische Verbindungen wie Dioxine und Furane, PAK oder PCB. Seit einigen Jahren werden auch Einträge von Pflanzenschutzmitteln in verschiedene Medien untersucht. Schwermetalle Schwermetalle, wie z. B. Blei, Cadmium, Kupfer oder Nickel, sind natürliche Bestandteile der Erdkruste und werden durch Aktivitäten des Menschen in die Umwelt eingetragen. So werden Metalle insbesondere bei der Verbrennung fossiler Brennstoffe sowie bei ihrer Herstellung (Verhüttung) und Verarbeitung in großen Mengen freigesetzt. Weitere wichtige Emissionsquellen sind Müllverbrennungsanlagen, die Zementindustrie, die Glasindustrie und der Kraftfahrzeugverkehr. Metalle sind in der Umwelt langlebig und werden ständig weiter verbreitet. Sie wirken in bestimmten Konzentrationen toxisch (= giftig) und können die Bodenfunktionen und die Qualität der darauf wachsenden Pflanzen beeinträchtigen. So können sie sich auch in Nahrungs- und Futterpflanzen anreichern und gelangen damit in die Nahrung des Menschen. In NRW werden die Gehalte von Metallen in Nahrungs-und Futterpflanzen regelmäßig ermittelt. Die Abbildung zeigt die Abnahme der Blei-Gehalte in Graskulturen an Hintergrundstandorten und im Duisburger Hafen von 1987 bis heute. Organische Schadstoffe Aufgrund ihrer Langlebigkeit, Giftigkeit und ihrer weltweiten Verbreitung werden auch die Wirkungen von persistenten organischen Schadstoffen („Persistent Organic Pollutants“ = POPs) untersucht. POPs sind chemische Verbindungen, die in der Umwelt nur langsam abgebaut werden. Besondere Umweltrelevanz ergibt sich daraus, dass sie nach ihrer Freisetzung in der Umwelt verbleiben und sich in der Nahrungskette anreichern. Damit können sie ihre schädigende Wirkung auf Ökosysteme und Mensch langfristig entfalten. Einige POPs weisen eine hohe Toxizität (=Giftigkeit) auf. Da sie auch weiträumig transportiert werden, können sie selbst in entlegenen Gebieten zu einer Belastung führen. Zu den POPs gehören Chemikalien, die zum Zwecke einer bestimmten Anwendung hergestellt wurden (z. B. PCB) aber auch solche, die unbeabsichtigt bei Verbrennungs- oder anderen thermischen Prozessen entstehen (z. B. Dioxine und Furane). Mit Hilfe von Bioindikatoren können Immissionen von organischen Schadstoffen erfasst werden. In der Abbildung sieht man die PCB-Gehalte in Grünkohl- und Graskulturen in der Nähe des Dortmunder Hafens, die 2016 eine deutliche Belastung angezeigt haben und zu weiteren Maßnahmen führten. Seit 2010 waren deshalb die Gehalte wieder deutlich geringer. Pflanzenschutzmittel Bulk-Sammler zur Ermittlung von Pflanzenschutzmitteln in der trockenen und nassen Deposition am Standort in Essen, Bild: LANUV Pflanzenschutzmittel werden in der Landwirtschaft eingesetzt, um Nahrungs- und Futterpflanzen vor Schädlingen, wie z. B. Insekten oder Pilzen (Insektizide, Fungizide), zu schützen bzw. um unerwünschte Beikräuter am Wachstum zu hindern (Herbizide). Pflanzenschutzmittel können auch abseits der eigentlichen Anwendungen in verschiedenen Medien nachgewiesen werden. So findet man viele Wirkstoffe in Gewässern, weil sie beispielsweise mit dem Regen von den behandelten Flächen ausgewaschen werden. Einige Wirkstoffe können auch über die Luft verbreitet werden. Diese werden dann z. B. mit dem Regen ausgewaschen und landen auf Pflanzen oder im Boden. Diese Einträge werden in NRW mithilfe von Bulk-Sammlern zum Auffangen der nassen und trockenen Deposition erfasst. Darüberhinaus werden auch Untersuchungen mit Pflanzen durchgeführt. Bioindikation Bioindikatoren sind Organismen oder Organismengemeinschaften, die auf Schadstoffbelastungen mit Veränderungen ihrer Lebensfunktion reagieren (=Reaktionsindikatoren) bzw. den Schadstoff akkumulieren (= Akkumulationsindikatoren). In der Vergangenheit wurden in NRW Flechten als Reaktionsindikatoren eingesetzt. Heute kommen in der Regel nur noch Akkumulationsindikatoren, wie z. B. die Graskultur und Grünkohl, zum Einsatz. Diese werden meist aktiv an Belastungsstandorten exponiert. Bei Schadensfällen werden Nahrungspflanzen passiv beprobt, wie z. B. beim Löwenzahnscreening. Graskultur Anzucht der Graskulturen in Tontöpfen, Bild: LANUV Das Verfahren der standardisierten Graskultur wird im Rahmen des Wirkungsdauermessprogrammes zwischen Mai und September nach der Richtlinie VDI 3957 Blatt 2 durchgeführt. Als Akzeptorpflanze wird die Grasart Lolium multiflorum ( ssp. italicum ) verwendet, die gut luftverunreinigende Stoffe anreichern kann. Das Gras verbleibt jeweils vier Wochen an einem Standort und wird anschließend auf Schwermetalle und an acht Messstationen zusätzlich auf organische Schadstoffe untersucht. Grünkohlexposition Das Verfahren der Grünkohlexposition wird nach der Richtlinie VDI 3957 Blatt 4 zwischen Mitte August bis Mitte November im Rahmen des Wirkungsdauermessprogramms eingesetzt. Dabei werden Grünkohlpflanzen in Pflanzcontainern exponiert. Grünkohl vermag aufgrund der Oberflächenstruktur der Blätter und der wachshaltigen Kutikula in besonderem Maße lipophile (=fettlösliche), organische Verbindungen zu binden. Nach der Ernte wird der Grünkohl gewaschen und küchenfertig aufbereitet. Die Proben werden auf Schwermetalle und organische Schadstoffe untersucht. Das Grünkohlexpositionsverfahren wird auch bei Untersuchungen an verschiedenen Belastungsschwerpunkten eingesetzt. Dabei ist es wichtig, dass es sich bei Grünkohl um eine Nahrungspflanze handelt. So kann über den Schadstoffgehalt im Grünkohl die Gefährdung für die Bürgerinnen und Bürger direkt berechnet und ggfls. eine Verzehrempfehlung ausgesprochen werden. Löwenzahnscreening Das Löwenzahnscreening ist eine standardisierte Methode (Richtlinie VDI 3957 Blatt 7), um z. B. bei Störfällen in Industriebetrieben oder Bränden zeitnah eine Aussage über die Reichweite der Belastung und eine gesundheitliche Einschätzung von Nahrungspflanzen vorzunehmen. Dabei werden vor Ort wachsende Löwenzahnpflanzen beprobt, die potentiell Schadstoffen ausgesetzt waren. Löwenzahn wächst nahezu überall und kann zu jeder Jahreszeit beprobt werden. Die ermittelten Gehalte können mit Hintergrundwerten für NRW verglichen werden. Wirkungsdauermessprogramm Graskulturen werden auf 1,50 m Höhe vier Wochen lang am Standort Essen exponiert, Bild: LANUV Das Wirkungsdauermessprogramm (WDMP) wurde 1995 im Auftrag des Ministeriums für Umwelt, Raumordnung und Landwirtschaft des Landes NRW zur Langzeitbeobachtung immissionsbedingter Wirkungen vom Landesumweltamt NRW konzipiert und umgesetzt. Teilweise konnte auch auf ältere Daten früherer Messprogramme zurückgegriffen werden, so dass mittlerweile für einige Schwermetall-Immissionen Zeitreihen über einen Zeitraum von über 25 Jahren vorliegen. Die Langzeitbeobachtung immissionsbedingter Wirkungen dient zum einen der Ermittlung von Hintergrunddaten für die unterschiedlich belasteten Räume in NRW und deren Charakterisierung. Daraus können Zeitreihen erstellt, Trends ermittelt und Basisdaten für die Umweltberichterstattung sowie Referenzwerte für Gutachten abgeleitet werden. Zum anderen ist das Ziel aber auch die Überwachung von (potentiellen) Emittenten und die Erfolgskontrolle emissions- und immissionsmindernder Maßnahmen. Darüber hinaus dient das WDMP der Qualitätssicherung von Bioindikationsverfahren. Mess- und Monitoring-Programme https://umweltindikatoren.nrw.de/ Immissionsbedingte Hintergrundbelastung von Pflanzen in NRW - Schwermetalle und organische Verbindungen Neue Bioindikationsverfahren zum anlagenbezogenen Monitoring Aktuelle Messungen Messstelle mit verschiedenen pflanzlichen Bioindikatoren am Standort Essen, Bild: LANUV Momentan erfolgen an 14 Messstationen Eintrags- und Depositionsmessungen, Staubniederschlagsmessungen und die Exposition von standardisierter Graskultur und Grünkohl. Neben der Untersuchung der Pflanzen und des Staubniederschlags auf Schwermetalle, werden seit 1998 (Grünkohl) bzw. 2003 (Gras) auch verschiedene, humantoxikologisch relevante, organische Komponenten bestimmt. Diese persistenten organischen Schadstoffe (Persistent organic pollutants = POPs) sind polychlorierte Biphenyle (PCB), dioxinähnliche polychlorierte Biphenyle (dl-PCB), polychlorierte Dibenzodioxine/ - Furane sowie polyzyklische aromatische Kohlenwasserstoffe und deren Leitkomponente Benzo-(a)-Pyren (BaP). Dabei dienen die Messstationen an den Waldstandorten im Eggegebirge (Velmerstot), im Rothaargebirge (Hilchenbach), im Bergischen Land (Osenberg) und in der Eifel (Simmerath), die Standorte im landwirtschaftlichen Bereich in Bocholt und in Gütersloh sowie die städtischen Standorte in Köln, Langenfeld, Essen, Dortmund und Duisburg-Walsum der Erfassung der Hintergrundbelastung in NRW. Die Messstation im Duisburger Hafen dient der Überwachung eines stark industriell geprägten Bereiches; die Messstation auf einer Verkehrsinsel in Düsseldorf -Mörsenbroich dient der Erfassung eines stark verkehrsbelasteten Standortes. Die Messstation in Bottrop ist ebenfalls durch eine Quelle beeinflusst, da sie sich in unmittelbarer Nähe zu einer Kokerei befindet. Sonderuntersuchungsprogramme Aus Industriebetrieben können z. B. bei Störfällen Schadstoffe in die Umwelt gelangen. Diese können sich auch in Nahrungspflanzen anreichern. Deshalb werden in diesen Fällen Nahrungspflanzen im betroffenen Gebiet untersucht. Hierbei sind insbesondere Pflanzen interessant, deren Blätter verzehrt werden, wie etwa Grünkohl, Mangold, Spinat und Salat. Die beaufschlagten Pflanzen werden dann im Umkreis des Industriebetriebes z. B. aus betroffenen Gärten geerntet, küchenfertig aufbereitet und auf Schadstoffe untersucht. Sonderuntersuchungsprogramme Klimawirkungen In NRW werden in zwei phänologischen Gärten die Wirkungen des Wetters, der Witterung und des Klimas auf die Entwicklungsphasen der Pflanzen untersucht. Es wird beispielsweise erfasst, wann der Blühbeginn erfolgt oder Früchte reif sind. Die Phänolgie ist ein besonders sensitiver Indikator für den Klimawandel, weil anders als bei rein chemisch-physikalischen Messungen alle Einwirkunsfaktoren integrativ erfasst werden. Phänologie zum Anfassen Klimaatlas NRW
Schwermetalldepositionen Bei den Schwermetallen Blei, Cadmium und Quecksilber ist ein Rückgang der atmosphärischen Einträge (Deposition) zu verzeichnen. Modellrechnungen zeigen: In Deutschland liegen die Schwermetalleinträge aus der Atmosphäre im ländlichen Hintergrund im Jahr 2020 im Bereich von 0,149 – 0,428 kg Blei pro km², 5,7 – 15,1 g Cadmium pro km² und 3,7 – 10,1 g Quecksilber pro km². Herkunft der Schwermetalle Die Schwermetalle Blei (Pb), Cadmium (Cd) und Quecksilber (Hg) sind gekennzeichnet durch Toxizität und chemische Stabilität. Diese Eigenschaften führen dazu, dass sich diese Stoffe in der Umwelt anreichern, Schäden an Ökosystemen verursachen und auch schädliche Auswirkungen auf die menschliche Gesundheit zeigen können. Sie werden in erheblichem Umfang anthropogen (durch menschliche Tätigkeiten) in die Atmosphäre ausgestoßen/abgegeben. In der Atmosphäre können sie weiträumig und grenzüberschreitend transportiert werden. Durch Depositionsvorgänge (Ablagerung) gelangen sie aus der Atmosphäre auch in andere Umweltmedien. Ein erheblicher Teil der Schwermetalle gelangt aber auch durch erneute Freisetzung bereits früher deponierter Mengen in die Atmosphäre. Es finden somit eine Resuspension (Blei, Cadmium) und Reemission (Quecksilber) statt. In Deutschland sind im Zeitraum 1990 bis 2020 rückläufige Schwermetall-Emissionen zu beobachten. Dies zeigt sich auch in den gemessenen und modellierten Depositionsdaten. Im Rahmen des europäischen Überwachungsprogramms EMEP wird mittels atmosphärischer Chemie-Transportmodelle die gesamte Ablagerung (nasse und trockene Deposition ) ausgewählter Schwermetalle flächendeckend für die EMEP-Region (Europa und Zentralasien) berechnet. Die Daten der Modellrechnungen werden in jährlichen Berichten durch das Meteorological Synthesizing Centre - East ( MSC -E) veröffentlicht. Gesamtdepositionen von Blei Die höchsten modellierten Blei-Gesamtdepositionen in Europa lagen in 2020 im Bereich von 0,8 bis 2,0 kg Pb/km², hauptsächlich in Regionen mit hoher Emission , wie unter anderem auch Westdeutschland. Innerhalb Deutschlands traten die niedrigsten Pb-Depositionen (< 0,5 kg Pb/km²) vorwiegend im Norden und in der Mitte sowie am Alpenrand auf (siehe Karte „Modellierte Gesamtdepositionen von Blei, Cadmium, Quecksilber in der EMEP-Region, 2022“). Gesamtdepositionen von Cadmium Die Cadmium-Gesamtdepositionen in der EMEP Region variieren im Bereich von 5 bis 60 g Cd/km². In Deutschland traten die höchsten Cd-Depositionen (z. T. > 60 g Cd/km²) in Westdeutschland (NRW), die niedrigsten Cd-Depositionen (z. T. < 15 g Cd/km²) vorwiegend in Teilen Nord-, Süd und Mitteldeutschlands (MV, TH, BY) auf (siehe Karte „Modellierte Gesamtdepositionen von Blei, Cadmium, Quecksilber in der EMEP-Region, 2022"). Gesamtdepositionen von Quecksilber Die Quecksilber (Hg)-Gesamtdepositionen im EMEP Gebiet lagen in 2020 größtenteils im Bereich von bis zu 25 g Hg/km² mit einzelnen Hotspots im Osten Europas. Die höchsten Hg-Depositionen in Deutschland traten großräumig in Westdeutschland (NRW), die niedrigsten Hg-Depositionen (< 10 g Hg/km²) großräumig vorwiegend in der Mitte Süd- und Norddeutschlands (siehe Karte Modellierte Gesamtdepositionen von Blei, Cadmium, Quecksilber in der EMEP-Region, 2022). Messungen des Luftmessnetzes des Umweltbundesamtes Schwermetalldepositionen werden auch im Luftmessnetz des Umweltbundesamtes ( UBA ) bestimmt. Dabei wird die nasse Deposition erfasst, d. h. die mit Regen und Schnee eingetragenen Schwermetalle. Die nasse Deposition trägt ca. ¾ zur Gesamtdeposition bei. Die „EBAS“ Datenbank enthält unter anderem auch Schwermetalldepositions-Daten aller deutschen Messstationen. Die nassen Schwermetalldepositionen an sechs UBA-Luftmessstationen im Jahr 2021 sind in der Tabelle „Nasse Jahresdepositionssummen von Schwermetallen und Halbmetallen im Luftmessnetz des Umweltbundesamtes 2021“ zusammengefasst. Die nassen Depositionen von Blei (0,19 bis 0,51 kg/km²), Cadmium (8,0 bis 17 g/km²) und Quecksilber (2,8 bis 8,3 g/km²) liegen meist unter den mit dem EMEP-Modell für Deutschland berechneten Gesamtdepositionen, welche zusätzlich die trockenen Depositionen beinhalten.
Bioindikation von Luftverunreinigungen Aus der chemischen Analyse von Moosen lassen sich Rückschlüsse auf die atmosphärische Schadstoffbelastung ziehen (Biomonitoring). Seit 1990 nahm die Belastung durch die meisten Metalle flächendeckend deutlich ab. Für Stickstoff ist gegenüber 2005 keine Entlastung festzustellen. Bei der Erhebung 2015/16 (keine aktuelleren Daten) fanden erstmals auch Untersuchungen zu organischen Schadstoffen statt. Moose als Bioindikator Die Methode des Moosmonitorings wurde in den späten 1960er-Jahren entwickelt. Sie basiert darauf, dass Moose Stoffe direkt aus dem Niederschlag und aus trockener Deposition (Ablagerungen aus der Luft) beziehen. Deponierte Schadstoffe reichern sich im Moos an und können über einen bestimmten Zeitraum gemessen werden. Bei der großräumigen Kartierung der Bioakkumulation von Metallen und Stickstoff können Moose daher als Indikator für atmosphärische Deposition dienen. Das Moosmonitoring ist für ein flächendeckendes Screening der Belastungssituation bei vielen selten gemessenen Metall-Elementen besonders geeignet. Häufig ist das Moosmonitoring die einzige flächenbezogene Informationsquelle zur räumlichen Verteilung der Belastung, da in anderen Programmen nur wenige Schwermetalle und diese oft nur optional und punktuell gemessen werden. In Pilotstudien wird derzeit untersucht, ob sich die Moose auch als Bioindikatoren für persistente organische Schadstoffe (Persistent Organic Pollutants, POPs) eignen. Deutsches Moosmonitoring Das deutsche Moosmonitoring 2015/16 setzt die 1990 begonnene und bis 2005/06 im 5-Jahresabstand durchgeführte Untersuchungsreihe zur Bioakkumulation in Moosen fort. Untersuchte Arten waren wie zuvor Hypnum cupressiforme, Pleurozium schreberi und Pseudoscleropodium purum . Das Erhebungsnetz umfasste 2015/16 noch 400 Standorte. Räumliche und zeitliche Trends der Akkumulation können für 12 Schwermetalle über den Zeitraum 1990 bis 2015/16 dargestellt werden. Zu diesen zwölf Metall-Elementen gehören Aluminium (Al), Antimon (Sb), Arsen (As), Blei (Pb), Cadmium (Cd), Chrom (Cr), Eisen (Fe), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg), Vanadium (V) und Zink (Zn) (siehe Karten). In früheren Kampagnen war das Untersuchungsnetz dichter und es wurden teilweise deutlich mehr Metallelemente untersucht. Neben den Metallen beinhaltete die Analytik 2015/16 zum zweiten Mal Stickstoff (N). An acht ausgewählten Standorten wurde erstmals in Deutschland ein breites Spektrum der POPs untersucht. Durch geostatistische Auswertungen können aus den an 400 Geländepunkten erhobenen Stoffgehalten in den Moosen Flächenschätzungen abgeleitet und deutschlandweite Karten der Stoffakkumulation in Moosen dargestellt werden. Ein Multi-Metall-Index fasst die Elementgehalte in den Moosen zusammen und dient unter anderem zur Veranschaulichung räumlich-zeitlicher Trends und zur Identifikation von Hot Spots der Schwermetallanreicherung. Der zeitliche Trend von 1990 bis 2016 zeigt für die meisten Metalle einen signifikanten und flächendeckenden Rückgang der Belastung. Auch gegenüber der Vorgängerkampagne (2005/06) ging die Schwermetallbelastung bei allen Metallen außer Hg (hier nur 4 %) noch einmal deutlich zurück. Dagegen ist bei Stickstoff gegenüber der ersten Beprobung für Deutschland im Jahr 2005 insgesamt kein Rückgang der Belastung festzustellen, es traten etwas abweichende räumliche Muster auf. Die Pilotstudie zu POPs an acht deutschen Standorten zeigte die prinzipielle Eignung der Moose als Bioindikatoren für die meisten der untersuchten Stoffe und belegte ihre weiträumige Verbreitung. Karte: Blei Quelle: Umweltbundesamt Karte: Cadmium Quelle: Umweltbundesamt Karte: Quecksilber Quelle: Umweltbundesamt Karte: Kupfer Quelle: Umweltbundesamt Karte: Eisen Quelle: Umweltbundesamt Karte: Zink Quelle: Umweltbundesamt Karte: Nickel Quelle: Umweltbundesamt Karte: Arsen Quelle: Umweltbundesamt Karte: Vanadium Quelle: Umweltbundesamt Karte: Chrom Quelle: Umweltbundesamt Karte: Antimon Quelle: Umweltbundesamt Karte: Stickstoff Quelle: Umweltbundesamt Räumliche Unterschiede in Deutschland Die Metallgehalte in den Moosen zeigen bei As, Cd, Ni, Pb, Sb und Zn 2015/16 ähnliche räumliche Verteilungsmuster wie schon in den Messungen von 1995 und 2005: Die Hot Spots finden sich zumeist im urban-industriell geprägten Ruhrgebiet, der dicht besiedelten Rhein-Main-Region, in den industriell geprägten Regionen der neuen Länder (zum Beispiel Raum Halle/Leipzig) sowie im Saarland, in Sachsen und am südlichen Oberrhein. Die räumliche Verteilung der Stickstoff-Bioakkumulation (siehe Karte „Stickstoff“) weicht in einigen Regionen von der mit dem chemischen Transportmodell LOTOS-EUROS erzeugten Karte der Stickstoff-Gesamtdeposition ab. Insofern sind die Ergebnisse des Biomonitoring für Stickstoff derzeit noch schwer zu interpretieren. Die Ursachen dieser Unterschiede müssen vertieft untersucht werden. Europaweites Monitoring 20 europäische Länder führten 1990 ein erstes europaweites Monitoring zur atmosphärischen Belastung mit Schwermetallen in Moosen („Atmospheric Heavy Metal Deposition in Europe - Estimations Based on Moss Analysis“) durch. Dieser „Moss Survey“ erfolgt seitdem auf freiwilliger Basis im 5-Jahres-Turnus auf Grundlage der Genfer Luftreinhaltekonvention (Convention on Long-range Transboundary Air Pollution, CLRTAP) im Kooperativprogramm ICP Vegetation. Europaweit umfasste der Moss Survey bisher bis zu 7.000 Probenentnahmestandorte, die nach weitgehend einheitlichen Kriterien und Methoden untersucht wurden. Das Umweltbundesamt ( UBA ) koordiniert die Teilnahme Deutschlands. Das ICP Vegetation publiziert die Ergebnisse des Moosmonitorings und berichtet sie an die Arbeitsgruppe „Wirkungen“ (Working Group on Effects, WGE) der CLRTAP. 2015/16 übermittelten 35 Länder, die zum Teil auch außerhalb der geografischen Grenzen Europas liegen, Daten zu Schwermetallen, zwölf Länder Daten zu Stickstoff und acht Länder Daten zu POPs in Moosen. Mit Hilfe des europaweiten Moosmonitoring-Programms werden die räumliche und zeitliche Veränderung weiträumig transportierter Stoffe erfasst und somit die Auswirkungen von Luftreinhaltemaßnahmen dokumentiert. In der Kampagne 2005/06 wurde erstmals europaweit die Anreicherung von Stickstoff in Moosen untersucht. In den Jahren 2010/11 beinhaltete das Moosmonitoring erstmals eine Pilotstudie zu POPs, die 2015/16 fortgesetzt wurde.
High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0 mg g- 1 inside and 11.9 mg g- 1 outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.<BR>Quelle: http://www.sciencedirect.com/
Origin | Count |
---|---|
Bund | 91 |
Land | 12 |
Type | Count |
---|---|
Förderprogramm | 78 |
Text | 8 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 21 |
offen | 80 |
Language | Count |
---|---|
Deutsch | 96 |
Englisch | 20 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 1 |
Dokument | 6 |
Keine | 81 |
Unbekannt | 4 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 88 |
Lebewesen & Lebensräume | 93 |
Luft | 93 |
Mensch & Umwelt | 101 |
Wasser | 86 |
Weitere | 98 |