Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
<p>Bei den Schwermetallen Blei, Cadmium und Quecksilber ist ein Rückgang der atmosphärischen Einträge (Deposition) zu verzeichnen. Modellrechnungen zeigen: In Deutschland liegen die Schwermetalleinträge aus der Atmosphäre an den UBA Stationen im ländlichen Hintergrund im Jahr 2023 im Bereich von 0,14 – 0.54 kg Blei pro km², 7,4 – 16.1 g Cadmium pro km² und 3,2 – 10,2 g Quecksilber pro km².</p><p>Herkunft der Schwermetalle</p><p>Die Schwermetalle Blei (Pb), Cadmium (Cd) und Quecksilber (Hg) sind gekennzeichnet durch Toxizität und chemische Stabilität. Diese Eigenschaften führen dazu, dass sich diese Stoffe in der Umwelt anreichern, Schäden an Ökosystemen verursachen und auch schädliche Auswirkungen auf die menschliche Gesundheit zeigen können. Sie werden in erheblichem Umfang <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a> (durch menschliche Tätigkeiten) in die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> ausgestoßen/abgegeben. In der Atmosphäre können sie weiträumig und grenzüberschreitend transportiert werden. Durch Depositionsvorgänge (Ablagerung) gelangen sie aus der Atmosphäre auch in andere Umweltmedien. Ein erheblicher Teil der Schwermetalle gelangt aber auch durch erneute Freisetzung bereits früher deponierter Mengen in die Atmosphäre. Es finden somit eine Resuspension (Blei, Cadmium) und Reemission (Quecksilber) statt. In Deutschland sind im Zeitraum 1990 bis 2023 grundsätzlich rückläufige <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/schwermetall-emissionen">Schwermetallemissionen</a> zu beobachten. Dies zeigt sich auch in den gemessenen und modellierten Depositionsdaten.</p><p>Im Rahmen des europäischen Überwachungsprogramms <a href="http://www.emep.int/">EMEP</a> wird mittels atmosphärischer Chemie-Transportmodelle die gesamte Ablagerung (nasse und trockene <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>) ausgewählter Schwermetalle flächendeckend für die EMEP-Region (Europa und Zentralasien) berechnet. Die Daten der Modellrechnungen werden in jährlichen Berichten durch das <a href="https://msc-east.org/publications/">Meteorological Synthesizing Centre - East</a> (<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MSC#alphabar">MSC</a>-E) veröffentlicht.</p><p> Gesamtdepositionen von Blei</p><p>Die Gesamtdeposition von Blei in der EMEP Region lag 2022 in der Größenordnung von 0,1 bis 1 kg/km²/Jahr mit den höchsten Werten in Zentraleuropa und niedrigsten im nördlichen Teil der EMEP Region. Saisonale Änderungen in der Depositionsrate spiegeln den Einfluss von staubgetragener <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> aus Afrika und Zentralasien wider, die am stärksten auf Südeuropa auswirkt. In Zentral-sowie Südeuropa dominieren außerdem die Depositionen aus EMEP Regionen und primären anthropogenen Quellen, insbesondere in Ländern mit bedeutenden eigenen nationalen Emissionen wie Deutschland oder Polen. In kleineren Nachbarländern hingegen tragen grenzüberschreitende Transporte maßgeblich zu den Depositionen bei. Insgesamt beläuft sich der Anteil der grenzüberschreitenden Deposition in der EMEP Region auf über 50%.</p><p>Innerhalb Deutschlands traten die niedrigsten Pb-Depositionen (< 0,5 kg Pb/km²) vorwiegend im Norden und in der Mitte sowie am Alpenrand auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Cadmium</p><p>Die Cadmium-Gesamtdepositionen in der EMEP Region variieren im Bereich von 5 bis 60 g Cd/km². In Deutschland traten die höchsten Cd-Depositionen (z. T. > 60 g Cd/km²) in Westdeutschland (NRW), die niedrigsten Cd-Depositionen (z. T. < 15 g Cd/km²) vorwiegend in Teilen Nord-, Süd und Mitteldeutschlands (MV, TH, BY) auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Quecksilber </p><p>Die Quecksilber-Gesamtdepositionen im EMEP Gebiet lagen in 2022 größtenteils im Bereich von bis zu 25 g Hg/km² mit einzelnen Hotspots im Osten Europas. Die höchsten Hg-Depositionen in Deutschland traten großräumig in Westdeutschland (NRW), die niedrigsten Hg-Depositionen (< 10 g Hg/km²) großräumig vorwiegend in der Mitte Süd- und Norddeutschlands (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Messungen des Luftmessnetzes des Umweltbundesamtes</p><p>Schwermetalldepositionen werden auch im <a href="https://www.umweltbundesamt.de/luft/luftmessnetze/ubamessnetz.htm">Luftmessnetz des Umweltbundesamtes</a> (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>) bestimmt. Dabei wird die nasse <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> erfasst, d. h. die mit Regen und Schnee eingetragenen Schwermetalle. Die nasse Deposition trägt ca. ¾ zur Gesamtdeposition bei.</p><p>Die <a href="https://ebas-data.nilu.no/">„EBAS“ Datenbank</a> enthält unter anderem auch Schwermetalldepositions-Daten aller deutschen Messstationen. Die nasse Schwermetalldepositionen an sechs UBA-Luftmessstationen im Jahr 2023 sind in der Tabelle „Nasse Jahresdepositionssummen von Schwermetallen und Halbmetallen im Luftmessnetz des Umweltbundesamtes 2023“ zusammengefasst. Die nassen Depositionen von Blei (0,14 – 0.54 kg/km²), Cadmium (7,4 – 16.1 g/km²) und Quecksilber (3,2 – 10,2 g/km²) liegen meist unter den mit dem EMEP-Modell für Deutschland berechneten Gesamtdepositionen, welche zusätzlich die trockenen Depositionen beinhalten..</p>
Die Umweltökonomischen Gesamtrechnungen umfassen mehrere Strom- und Bestandsrechnungen, die ein möglichst umfassendes, übersichtliches, hinreichend gegliedertes quantitatives Gesamtbild der Zusammenhänge zwischen dem wirtschaftlichen Geschehen und dem Zustand sowie den Leistungen der Umwelt geben. Die Ökosystemrechnungen haben zum Ziel, das räumliche Ausmaß, den Zustand, sowie die Leistungen der Ökosysteme für den Menschen systematisch zu erfassen und im Zeitverlauf darzustellen. Die Ökosystemleistung Feinstaubfilterung (PM2.5) durch Vegetation bezieht sich auf die trockene Deposition, wobei sich Partikel mit einem Durchmesser ≤ 2,5 Mikrometer aus der Atmosphäre auf Oberflächen absinken. Ältere und weitere Qualitätsberichte finden Sie im Bereich Methoden.
Mittels offener Gefäße werden im Gelände alle Stoffe, die als trockener Staub (trockene Deposition) oder zusammen mit Regenwasser (nasse Deposition) aus der Luft auf Oberflächen gelangen, gesammelt. Anschließend wird der Inhalt der Gefäße getrocknet und gewogen. Aus der Fläche der Gefäße, der Standzeit und der gesammelten Staubniederschlagsmenge kann die Staubniederschlagsbelastung einer Fläche (Einheit: Masse pro Quadratmeter und Tag) errechnet werden. Neben der Staubniederschlagsmasse werden auch die Schwermetallgehalte bestimmt. Die Verteilung der Messpunkte sind landesweit nach Belastungsschwerpunkten festgelegt. Komponenten: Staubniederschlag und seine Inhaltsstoffe Blei, Cadmium, Arsen, Nickel, Chrom, Zink, Eisen.
Untersuchungen zum besseren Verstaendnis der Vorgaenge, die zur Verteilung und Entfernung von Spurenstoffen in bzw. aus der Atmosphaere beitragen (Atmosphaerische Lebensdauer, trockene Deposition): Erfassung der raeumlichen und zeitlichen Verteilung der wichtigsten Spurenstoffe mit luftchemischen Sensoren im mesoskaligen Bereich durch laengerfristige, bodennahe Messungen und kuerzere, intensive Messkampagnen. Verwendung der Messdaten als Eingangsdaten fuer Modellrechnungen, zur Verifikation von Simulationsergebnissen, sowie zur Verifikation von Fernerkundungsmessungen. Teilziele dabei sind: Bestimmung der SO2-, NOx-, O3- und Wasserdampf-Verteilungen, Abschaetzung der Depositionsraten in Gelaende mit unterschiedlicher Vegetation durch Messung und Simulation, Entwicklung schneller Messmethoden fuer atmosphaerische Spurenstoffe, Entwicklung geeigneter Voraussagemethoden.
Global betrachtet bilden biologische Bodenkrusten (Biokrusten) die produktivste Biomasse der -Kritischen Zone- arider Regionen der Erde. Sie bestehen aus heterotrophen Bakterien, Pilzen, Flechten, Moosen, Cyanobakterien und Algen sowie deren Ausscheidungsprodukten. Mittels extrazellulärer organischer Substanzen verkleben sie mineralische Bodenpartikel und bilden eine Art stabile -Haut- an der Bodenoberfläche. Diese aggregierte, gegenüber Wassererosion stabile Schicht trägt multifunktional zur Primärproduktion, Mineralisierung, biogenen Verwitterung, Festlegung trockener und nasser Deposition sowie zur Stabilisierung von Böden, Hängen und ganzen Landschaften bei. Als sogenannte Ökosystem-Ingenieure beeinflussen sie die Nährstoff- und hydrologischen Kreisläufe klein- und großräumig. Intensive Literaturstudien ergaben zweifelsfrei, dass die Biokrusten in ganz Südamerika nahezu unerforscht sind, obwohl sie in den Gebieten des SPP EarthShape sehr häufig vorkommen. Daher sind die Hauptziele unseres interdisziplinären Forschungsprogramms, 1) die weitgehend unbekannte Strukturierung und Zusammensetzung chilenischer Biokrusten mittels Feld- und Labormethoden zu untersuchen, um deren Verbreitung und organismische Zusammensetzung zu erfassen; 2) herauszufinden, wer von den abundanten Organismen mit welchen biochemischen Prozessen zur biogenen Verwitterung beiträgt, und die Verwitterungsraten in Abhängigkeit von Struktur und Zusammensetzung der Biokrusten und Umweltbedingungen (z.B. Mikroklima) aufzuklären; 3) die Funktion von Biokrusten in den gekoppelten biogeochemischen Kreisläufen von P- (Schwerpunkt!), C- und N-Verbindungen über räumliche Skalen, von atomar/molekular über Einzelminerale, Biokrustenmuster und Bodenprofile bis zu Hängen bzw. Einzugsgebieten zu erfassen, letzteres mittels fernerkundlich erfasster Spektraldaten und gemeinsam entwickelter Transferfunktionen sowie 4) zu verstehen, wie mikroklimatische Bedingungen und Wasserverfügbarkeit die Biokrustenzusammensetzung, Aktivität, Bedeckungsgrad und Funktion in ariden Ökosystemen steuern. Die Forschungsarbeiten beginnen mit einer gemeinsamen Feldkampagne zur Beschreibung pedologischer, geobotanischer und physisch-geographischer Gegebenheiten der Untersuchungsgebiete. Dabei werden die Forschungsflächen instrumentiert sowie Biokrusten- und Bodenproben gesammelt. Der methodisch moderne Ansatz nutzt neueste molekularbiologische, elektronenmikroskopische, pflanzenphysiologische, chemisch-analytische (massen- und synchrotronbasierte Spektroskopie) und Fernerkundungstechniken, kombiniert mit multivariater Datenanalyse. Wir erwarten, dass die Ergebnisse bisher unbekannte Biokrustenorganismen und physiologische/ökologische Funktionen erschließen sowie deren Beitrag zur biogenen Verwitterung und anderen fundamentalen Prozessen der Oberflächenformung der Erde erfassen, und damit grundlegende Erkenntnisse mit entsprechenden Daten für Geosystemmodelle auf regionaler und globaler Ebene generieren.
Das Begleitvorhaben zum Projekt 101 analysiert die Abweichungen zwischen bundesweiten Modellierungen und Modellierungen im regionalen Maßstab. Das Projekt klärt, warum im Süden Deutschlands nach den PINETI-Projekten des UBA netto mehr reaktiver Stickstoff exportiert wird, als nach sonstigen Modellen. Detailfragen betreffen z.B. das Verhältnis nasse zu trockener und feuchter Deposition in Mittelgebirgen und den Kompensationspunkt für Ammoniak.
Freisetzungen von Radionukliden aus Kernkraftwerkunfaellen (Harrisburg, Tschernobyl) haben gezeigt, wie notwendig Kenntnisse ihrer Verbreitung in unserer Umwelt sind. Durch nasse oder trockene Deposition gelangen die Radioisotope auf Pflanzen und Boden, werden von den Pflanzen via Wurzeln oder Blaetter aufgenommen und gelangen so in die menschliche Nahrungskette. Die Bestimmung von Transferfaktoren unter lokalen Bedingungen (Klima, Nahrungsmittelkonsum, Ernaehrungsgewohnheiten) sowie die Verteilung der Radionuklide in den Pflanzen (essbarer Anteil) sind sehr wichtig, aber lueckenhaft. Ferner fehlen Daten ueber Resuspensionsfaktoren und Abwitterungskonstanten. Die besten Rechenmodelle fuer die Abschaetzung des Transports von Radionukliden durch die Umwelt und die nachfolgende menschliche Strahlenbelastung nuetzen wenig, wenn die genauen Kenntnisse dieser Parameter und ihrer Wechselwirkung fehlen.
Umweltökonomische Gesamtrechnungen Ökosysteme erbringen erhebliche Leistungen für die Gesellschaft Ergebnisse zu den Ökosystemleistungen Seite teilen 1. Oktober 2025 - Die Ökosystemrechnungen als Teil der Umweltökonomischen Gesamtrechnungen haben zum Ziel, das räumliche Ausmaß, den Zustand sowie die Leistungen der Ökosysteme für den Menschen systematisch in Konten zu erfassen und im Zeitverlauf darzustellen. Damit entsteht eine Datengrundlage, auf der politische Entscheidungen getroffen werden können. Die Leistungsbilanzen der Ökosysteme zeigen eine Auswahl der vielfältigen Leistungen der Natur. Diese werden auf Basis der Flächen- und Zustandsbilanz in physischen Einheiten gemessen oder modelliert. Die dargestellten Leistungsindikatoren beziehen sich auf bundesweite jährliche Schätzwerte für alle Ökosysteme. Weitere Informationen zu Methoden enthalten die Qualitätsberichte , räumlich differenziertere Ergebnisse finden Sie im Statistischen Bericht sowie im Ökosystematlas . Feinstaubfilterung (PM2,5) Die Ökosystemleistung Feinstaubfilterung ( PM 2,5) durch Vegetation bezieht sich auf die trockene Deposition, also einer Ablagerung bei der Partikel mit einem Durchmesser ≤ 2,5 Mikrometer auf Blatt- und Pflanzenoberflächen absinken. Sie unterscheidet sich von der nassen Deposition, bei der Partikel durch Niederschlag ausgewaschen werden. Wie viel Feinstaub gefiltert wird, hängt von den chemischen und biologischen Bedingungen der Oberfläche sowie turbulenten Luftströmungen ab. Die Reduzierung der Feinstaubkonzentration durch Vegetation verringert gesundheitliche Schäden. Die Leistung wird als gefilterte Masse in Tonnen angegeben. Lädt... Kohlenstoffspeicherung (Nettosequestrierung) Vegetation und Böden in intakten Ökosystemen, insbesondere Wälder, Moore und Wiesen, nehmen Kohlenstoff aus der Atmosphäre auf und speichern diesen langfristig. Wird in diesen Ökosystemen mehr Kohlenstoff gespeichert als emittiert, spricht man von natürlichen Kohlenstoffsenken. Bei der Berechnung dieser Leistung werden Veränderungen im Kohlenstoff aus mineralischen und organischen Böden, aus unter- und oberirdischer Biomasse, Streu und Totholz, durch Waldbrände und gelösten organischen Kohlenstoff, nicht jedoch Holz- und Torfprodukte betrachtet. Die Leistung wird in tausend Tonnen angegeben. Da es sich um Nettowerte um Nettosequestrierung handelt, je nachdem ob ein Ökosysteme insgesamt eine Kohlenstoffquelle oder -Senke ist, ist die Interpretation dieser Leistung ein Spezialfall in der Leistungsbilanz der Ökosysteme. Intakte Ökosysteme können selbst bei negativen Werten einen wichtigen Beitrag dazu leisten, dass die Emissionen (etwa aus organischen Böden) nicht höher sind, als das etwa bei degradierten Flächen der Fall wäre. Lädt... Kühlung in Städten (lokale Klimaregulierung) Vegetation in Städten, wie etwa Baumreihen, Parks oder Dachbegrünung, trägt durch Schattenwurf und Verdunstung dazu bei, die Temperatur in Städten im Sommer zu regulieren. Durch die Reduktion der Lufttemperatur und die Abmilderung von Hitzeinseln tragen urbane Ökosysteme zu höherem Wohlbefinden und geringerer gesundheitlicher Belastung durch Hitze bei. Die hier dargestellte Leistung bezieht sich auf die mittlere Temperaturreduktion durch Vegetation in Städten in den Sommermonaten Juli und August in Grad Celsius. Um die Temperaturreduktion durch Vegetation zu bestimmen, wird die Abhängigkeit der Temperatur von Vegetation bestimmt, ein Szenario ohne Vegetation modelliert und die Differenz als Kühlung berechnet. Lädt... Naturnaher Tourismus Die Bereitstellung von naturnahen Landschaften ermöglicht Erholung und Entspannung. Diese ziehen so Besucher und Touristen an, die in diesen Ökosystemen Zeit verbringen wollen. Damit unterstützt diese Ökosystemleistung nicht nur das Wohlbefinden und die Gesundheit der Gäste, sondern ist auch für die regionale Wirtschaft bedeutend. Für die Berechnung des naturnahen Tourismus werden Daten zu privaten Übernachtungen pro Gemeinde berechnet und mittels einer detaillierten Karte zur Ästhetischen Qualität der Landschaft (nach Hermes et al. 2023) jener Anteil modelliert, der auf die Ökosysteme der jeweiligen Gemeinde zurückzuführen ist. Die Grafik zeigt Übernachtungen insgesamt und Übernachtungen des naturnahen Tourismus. Lädt... Holzzuwachs Die Ökosystemleistung Holzzuwachs gibt den durchschnittlichen jährlichen Volumenzuwachs lebender Bäumen an, berechnet aus dem zu Beginn des Jahres vorhandenen Bestand an lebenden Bäumen (wachsender Bestand) abzüglich der durchschnittlichen jährlichen Sterblichkeit. Hauptnutzer dieser Leistung ist die Forstwirtschaft. Die Leistung wird in Millionen m 3 mit Rinde angegeben. Lädt... Ernteerträge von Kulturpflanzen Diese Leistung gibt den Ökosystembeitrag zum Pflanzenwachstum an, approximiert durch die Menge der geernteten Kulturpflanzen für verschiedene Verwendungszwecke. Dazu gehören geerntete Kulturpflanzen die der Erzeugung von Nahrungsmitteln und Fasern, Futtermitteln und Energie dienen sowie geweidete Biomasse. Hauptnutzer dieser Bereitstellungsleistung ist der Landwirtschaftssektor. Sie wird in tausend Tonnen angegeben. Lädt...
| Origin | Count |
|---|---|
| Bund | 81 |
| Land | 12 |
| Type | Count |
|---|---|
| Förderprogramm | 71 |
| Text | 9 |
| unbekannt | 11 |
| License | Count |
|---|---|
| geschlossen | 18 |
| offen | 73 |
| Language | Count |
|---|---|
| Deutsch | 90 |
| Englisch | 10 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Datei | 1 |
| Dokument | 7 |
| Keine | 71 |
| Unbekannt | 4 |
| Webseite | 15 |
| Topic | Count |
|---|---|
| Boden | 80 |
| Lebewesen und Lebensräume | 84 |
| Luft | 85 |
| Mensch und Umwelt | 91 |
| Wasser | 79 |
| Weitere | 91 |