The pronounced increase in ozone observed at the Alpine station Zugspitze (2962 ma.s.l.) since the 1970s has been ascribed to an increase in stratospheric air descending to the Alps. In this paper, we present a reanalysis of the data from for both ozone (1978 to 2011) and carbon monoxide (1990-2011), which has been extended until 2020 by the data from the Global Atmosphere Watch site at the Umweltforschungsstation Schneefernerhaus (UFS; 2671 ma.s.l. - above sea level), which is located just below the Zugspitze summit. For ozone between 1970 and 1977, a constant annual average of 36.25 ppb (parts per billion) was assumed to have been obtained by extrapolation. The analysis is based on data filtering, utilizing the isotope 7Be (measured between 1970 and 2006) and relative humidity (1970 to 2011; UFS from 2002 to 2020). We estimate both the influence of stratospheric intrusions directly descending to the northern rim of the Alps from the full data filtering and the aged ("indirect") intrusions from applying a relationship between ozone and the 7Be data. The evaluated total stratospheric contribution to the annual average ozone rises roughly from 12 ppb in 1970 to 24 ppb in 2003. It turns out that the increase in the stratospheric influence is particularly strong in winter. A lowering in positive trend is seen afterwards, with a delay of roughly 1 decade after the beginning of the decrease in the solar irradiation. The air masses hitting the Zugspitze summit became drier until 2003, and we see the growing stratospheric contribution as being an important factor for this drying. Both an increase in the lower-stratospheric ozone and the growing thickness of the intruding layers departing downward from just above the tropopause must be taken into consideration. Carbon monoxide in the intrusions did not change much during the full measurement period from 1990 to 2020, with a slight increase until 2005. This is remarkable since, for air outside intrusions, a decrease by approximately 44 % was found, indicating a substantial improvement in the tropospheric air quality. © Author(s) 2023
Das Projekt "Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.
Das Projekt "How is the stratospheric water vapour affected by climate change, and which processes are responsible? (SHARPI-WV)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Abteilung Dynamik der mittleren Atmosphäre durchgeführt. Observational data sets of water vapour (H2O) and HDO from MIPAS and H2O from SCIAMACHY will be extended and further improved in data quality. An 'all-satellite' data set containing data of SAGE, HALOE, SMR, MLS, MIPAS and SCIAMACHY and covering 30 years from 1984 to 2014 will be generated by appropriate data merging. The MIPAS and SCIAMACHY data record will be analysed regarding the anomalies of the time series (tape recorder, monsoon systems), potential trends, and correlations to other atmospheric quantities like tropical tropopause temperature, with some focus on the HDO data record. Similar analysis will be performed with improved transient and sensitivity model runs available within SHARP. H2O modelling will be included in the Lagrangian version of EMAC, and case process studies will be performed to analyse the H2O transport into the stratosphere. The modelled H2O fields will be compared to H2O data sets made available from MIPAS. For ECHAM5/MESSy, a higher resolved version not producing the cold and dry bias in the tropopause will be sought for. The CMIP5 simulations of MPI-M will be analysed regarding water vapour, and internal variability will be compared to climate change signals. The role of methane for the stratospheric water vapour budget will be re-assessed in the light of recent changes in methane growth, both from the observational and model data side.
Das Projekt "Verbundprogramm Schadstoffe in der Luftfahrt - Wirkung und Praevention -" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Projektbüro Raumfahrtnutzung durchgeführt. In dem Verbundprogramm 'Schadstoffe in der Luftfahrt' werden die moeglichen Auswirkungen der durch den Luftverkehr in die Tropopause/untere Stratosphaere eingebrachten Emissionen untersucht und die Grundlagen fuer die technischen Moeglichkeiten zur Reduktion der Emissionen entwickelt. Es ist daher in die Teilprogramme 'Atmosphaerenforschung' und 'Triebwerkstechnologie' untergliedert. Die Arbeitsthemen im Teilprogramm 'Atmosphaerenforschung' sind: Ermittlung der Schadstoffemissionen, Ausbreitung und Wirkung der lufttechnischen Emissionen und Ausbreitung und Wirkung der Wasserdampfemissionen. Im Teilprogramm 'Triebwerkstechnologie' werden die Arbeitspakete Ursachen der Schadstoffentstehung, Neue Brennkammerkonzepte und Neue Antriebskonzepte untersucht. An dem Programm sind unter der Leitung der DLR ca 30 Partner aus Industrie, Hochschule und hochschulfreier Forschung beteiligt.
Das Projekt "DOAS Messungen von der NASA Global Hawk während des NASA-ATTREX Projektes" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. The present project addresses differential optical absorption spectrometry (DOAS) measurements in scanning limb geometry from aboard the unmanned high-flying aircraft NASA Global Hawk (GH). The DOAS measurements are made within the NASA sponsored ATTREX (Airborne Tropical TRopopause EXperiment) project, by a 3 channel (UV/vis/nearer) optical spectrometer financed by NASA, but mostly built in Heidelberg. In fall 2011 and winter 2012/13 successful flights were already successfully performed and the DOAS instrument peformed. Within ATTREX three field campaigns are planned to take place in the Western Pacific (from EAFB, GUAM, and Darwin) in the years 2013 to 2014 (Jan./Feb. 2013, Jan./Feb. 2014 and June/July 2014). The field campaigns comprise about 50 GH sorties with 600 flight hours spent air-borne. Major scientific foci of the NASA-ATTREX project are the photochemistry, the microphysics of aerosols and cloud particles, and air mass transport into and within the tropical tropopause layer (TTL). The DOAS measurements aim to measure the vertical profiles in the TTL of ozone relevant species such as O3, HONO, NO2, C2H2O2, CH2O, O4, BrO, OClO, IO, and OIO, and of some microphysical properties aerosols and clouds, i.e., the particle phase function, Mie scattering extinction coefficient, the ice water path (IWP) and probably the ice water content (IWC). Together with complementary observations made by other instruments aboard the GH, the DOAS measurements may serve to particularily provide new insights into (a) the photochemistry of halogen oxides (OClO, BrO and IO) in the TTL, in particular on the contribution of so called halogenated Very Short Lived Species (VSLS) to the budgets of stratospheric halogens, (b) the impact of lightning produced NOx and HOx (NO2, and HONO) and other of radicals (c.f. CH2O, BrO, IO) to the oxidation capacity of air in the outflow region of deep convection, and (c) to the abundance and micro-physical properties of frozen aerosols and cloud particles in the upper tropical troposphere and TTL.
Das Projekt "Tropical High Altitude Clouds and their Impact on Stratospheric Humidity" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Clouds play a key role in the Earth's climate system by regulation of the incoming and outgoing radiation, chemical and dynamical processes. Ice clouds at high altitudes in the tropics, the so called tropical tropopause layer, are particularly important since this is the main region where air ascends slowly from the troposphere into the dry stratosphere. Thus, these ice clouds affect the stratospheric water vapour content which in itself is a main driver of radiative and chemical processes, e.g. ozone depletion, there. These clouds can either be of convective nature, or occur in convective overshooting cloud turrets, or they form in situ by large scale upwelling and cooling as subvisible cirrus. Although the latter occur frequently, little is known about the exact microphysical formation mechanisms and how they can be maintained. Previous modelling efforts using various different mechanisms, however, have failed to agree with the observed properties. This project aims to improve our knowledge of the impact clouds in the tropical tropopause layer have on stratospheric humidity, by studying their formation, maintenance, and occurrence frequencies.A set of state-of-the-art numerical models will be used to simulate the clouds in the tropical tropopause layer, taking advantage of their particular strengths. These models are the Weather Research and Forecasting (WRF) Model, the GLObal Model of Aerosol Processes (GLOMAP), and the Australian Community Climate and Earth-System Simulator (ACCESS). First, the questions related to the formation and maintenance of subvisible cirrus will be addressed. In a second step the impact of subvisible cirrus and overshooting convection on the stratospheric humidity will be assessed. Both the direct effects (e.g. injection of ice particles into the stratosphere) and indirect effects (e.g. change in dynamical processes) will be studied. In order to estimate the net effect, occurrence frequencies of both cloud types will be derived from a complementary set of ground based remote sensing observations from the Darwin site and satellite observation from the International Satellite Cloud Climatology Project. The data of airborne in situ measurements which I analyzed during my PhD will help to constrain and test the model simulations. A better understanding of the complex processes related to the clouds in the tropical tropopause layer will improve their representation in numerical models and thus, enhance the quality of model predictions. This will improve our ability to constrain climate predictions due to highly uncertain ice cloud processes. Additionally, knowing the impact of these clouds on stratospheric humidity will enable an improved quantification of their climate impact.
Das Projekt "Messungen von Ozon, Wasserdampf, Kohlenmonoxid und Stickoxiden durch Airbus-Flugzeuge im Dienst (MOZAIC-III) - O3- und H2O-Haushalt in der oberen Troposphaere/unteren Stratosphaere" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosphäre durchgeführt. Objective/Problems to be solved: The project proposes actions to detect, understand, assess and predict global change processes and to contribute to the European component of the global observing systems. It answers to interrogations of the origin, budget and evolution in the upper troposphere and lower stratosphere (UT/LS) of chemical species (ozone, water vapour) which have impact on air quality and climate, with special attention to the impact of aircraft emissions. Scientific objectives and approach: The MOZAIC-III project is designed for the evaluation of ozone and water vapour budgets in the tropopause region. It takes full advantage of the measuring capabilities of the in-service aircraft already equipped and of the database (O3, H2O) built up since August 1994. The purpose is to improve the current understanding on the processes active in this region of the atmosphere (UT/LS), and particularly on the aircraft impact. MOZAIC-III corresponds to installation, on the aircraft measuring units, of new CO and NOy devices and to the extension of the existing database of O3 and H2O measurements below 12 km altitude with simultaneous measurements of CO and NOy, in order to better characterise the origin of the air parcels sampled and the combined effects of transport and chemistry. The database is opened to the European research community. Data are analysed using statistical correlation, modelling of chemistry and dynamics, satellite data (ENVISAT, METEOSAT, TOVS) and assimilation methods. The duration of the series over almost 9 years allows to analyse trends, interannual variability, and correlations between species. The numerous data collected at a quasi global scale are used to improve current understanding of tropospheric chemical and dynamical processes and to quantify the ozone budget in the UT/LS region: stratospheric contribution, transport of pollution from PBL, free tropospheric formation, productions from NOx emitted by aircraft and NOx induced by lightning, surface deposition, chemical losses. The relation between upper tropospheric water vapour and sea surface temperature over tropical, sub-tropical and mid-latitude regions is investigated. Expected impacts: From the whole set of data collected since 1994, it is expected to assess the budget and trends of ozone and water vapour in the UT/LS, to reduce uncertainties on stratosphere/troposphere exchanges, to improve existing 3D CTM models and to better quantify the impact of subsonic aircraft. These results are of major concern for the evaluation of climate change. Prime Contractor: Centre National de la Recherche Scientifique, UMR 5560, Laboratoire d'Aerologie; Toulouse/France.
Das Projekt "PHILEAS (Untersuchung des Transport aus dem asiatischen Sommermonsun in hohe Breiten)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?
Das Projekt "Einfluss strukturierter Heizquellen auf die Dynamik auf grösseren Skalen (A02)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft / Deutsches Wirtschaftswissenschaftliches Institut für Fremdenverkehr eingetragener Verein (dwif e.V.) an der Ludwig-Maximilians-Universität München durchgeführt. In diesem interdisziplinären Projekt werden wir untersuchen, wie strukturierte Heizquellen auf kleineren Skalen Prozesse auf größeren Skalen beeinflussen. Dazu werden wir hochauflösende numerische Simulationen mit Hilfe der Methoden von uncertainty quantification erweitern. Dies erlaubt die Einführung von Zufallsvariablen, z.B. für Modellparameter und Umgebungsbedingungen. Diese Ansätze werden zur Untersuchung der Vorhersagbarkeit für zwei relevante atmosphärische Szenarien benutzt: (i) Konvektion, in der turbulenten und teilweise strukturierte Grenzschicht, und (ii) Einfluss von strukturierten Heizquellen (Cirrocumulus) in der Tropopausenregion auf die Dynamik größerer Skalen.
Das Projekt "Einfluss des Austausches zwischen Stratosphaere und Troposphaere auf den Transport und die Oxidationsfaehigkeit der Atmosphaere bei sich aenderndem Klima" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Ökologie, Lehrstuhl für Bioklimatologie und Immissionsforschung durchgeführt. Objective/Problems to be solved: STACCATO is a comprehensive study of stratosphere-troposphere exchange (STE) processes and their effect on atmospheric chemistry. STE is a key factor controlling the budget of ozone, water vapour and other substances in both the troposphere and lower stratosphere. Earlier studies of STE have concentrated primarily on the flux of air or trace constituents across the tropopause alone. Shallow exchange events are indeed partially reversible in nature and only produce compositional changes in the tropopause region. However, deep STE events are largely irreversible and have a highly significant and lasting impact on atmospheric chemistry through a substantial body of the atmosphere, even down to the earth's surface. Up until now, the importance of STE for the ozone budget relative to photochemical ozone formation from natural and anthropogenic precursor emissions, including those from aircraft, has remained uncertain. A comprehensive description of STE, which STACCATO seeks to provide, is thus a vital component for understanding the chemical composition of the atmosphere and its consequences. Scientific objectives and approach: STACCATO is undertaking a first detailed investigation of STE mixing of stratospheric and tropospheric air. Meteorological processes under investigation include the creation of fine-scale structures by chaotic advection, radiative decay of tracer filaments and mixing through turbulence in the free troposphere. The non-linear effect of this mixing on chemical processes is addressed with a box model as well as with a global model. The impact of STE on the oxidizing capacity of the troposphere, relative to other factors, is examined with two global chemistry models coupled to climate models. The fate of aircraft emissions is being addressed using passive tracer simulations and including these in the chemistry models. A new three-dimensional Lagrangian perspective of STE, focussing on deep exchange events, is being developed. The variability and recent trends of STE is being assessed, based on very high quality meteorological re-analysis data. Potential future changes to STE significance are being computed under scenarios of climate change obtained from simulations with two climate models. A major comparison of seven methods and models used to calculate STE is being carried out to find strengths and weaknesses of each approach and to identify reasons for discrepancies. A measurement dataset is being created to validate model results and to provide an independent estimate of the strength of STE. This includes the first long-term monitoring of two radionuclides, beryllium-7 and beryllium-10. Expected Impacts: Provision of an observational estimate of the strength of STE based on two years of radionuclide measurements. Analysis of the strength of STE and its variability during the last 15 years, based on Lagrangian models set up on meteorological re-analyses. Study of the possible changes in STE in a f
Origin | Count |
---|---|
Bund | 82 |
Type | Count |
---|---|
Förderprogramm | 81 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 81 |
Language | Count |
---|---|
Deutsch | 81 |
Englisch | 45 |
Resource type | Count |
---|---|
Keine | 69 |
Webseite | 13 |
Topic | Count |
---|---|
Boden | 74 |
Lebewesen & Lebensräume | 68 |
Luft | 82 |
Mensch & Umwelt | 82 |
Wasser | 72 |
Weitere | 81 |