API src

Found 888 results.

Modellierung von Strömungen über Bodenformen in Tidegebieten

Das Ziel dieses Projekts besteht in der Analyse der Strömungsmuster über subaquatischen Bodenformen in Tidegebieten mit Hilfe hochauflösender numerischer Modelle. In Flüssen, nahe der Küsten und in größeren Tiefen sind Bodenformen weit verbreitet und reflektieren Strömung und Sedimenttransportwege, während sie gleichzeitig einen starken Effekt auf die Strömung ausüben. Diese Effekte sind darüber hinaus von hoher sozio-ökonomischer Bedeutung, z.B. hinsichtlich der Schiffbarkeit von Flussmündungen und der Sicherheit von Offshore-Konstruktionen. Bedingt durch Hydrodynamik und dem Vorkommen sandiger Sedimente sind flache Tidegebiete durch die Entwicklung großer Felder komplexer Bodenformen gekennzeichnet. Strömungsmuster über diesen Bodenformen unterscheiden sich grundsätzlich von Strömungen über gleichmäßigen, idealisiert zweidimensionalen (2D) Bodenformen, die in Strömungskanälen und numerischen Modellen bisher betrachtet werden. Natürlichen Bodenformen sind dagegen intrinsisch dreidimensional (3D) mit komplexen Profilen, gekennzeichnet durch geschwungene Dünenrücken, Kolke, Bifurkationen, Diskontinuitäten und niedrige Leewinkel. In Küstengebieten sorgt die tidebedingte Strömungsumkehr für zusätzliche Komplexität in der Interaktion zwischen Bodenformen und Hydrodynamik. Die entsprechenden Strömungsmuster sind weitgehend unbekannt, insbesondere der Einfluss der Dreidimensionalität der Bodenformen auf die Gezeitenströmung, auch bedingt durch die Schwierigkeit, Strömungsgeschwindigkeiten und Turbulenz synoptisch mit ausreichender räumlicher und zeitlicher Auflösung zu messen. Im Rahmen der hier beschriebenen Studie wird ein dreidimensionales Transportmodell mit dem Modellsystem Delft3D erstellt, um Strömungen in natürlichen Bodenformfeldern mit entsprechend charakteristischer Morphologie zu simulieren. Dazu soll ein bestehendes und zur Simulierung von 2D Bodenformen genutztes Modell erweitert und zur Analyse der Strömungen über 3D Bodenformen verwendet werden. Mit diesem neuen Modell wird zum ersten Mal ermöglicht, Strömungsmuster und Turbulenz über natürlichen Bodenformfeldern unter realistischen Bedingungen, insbesondere unter Berücksichtigung der Umkehr der Gezeitenströmung, zu modellieren und den Einfluss einzelner morphologischer Elemente sowie deren Interaktion herauszuarbeiten. Diese Ergebnisse dienen schließlich der Optimierung und Parametrisierung kleinskaliger Teilprozesse in großmaßstäblichen hydro- und morphodynamischen Modellsystemen.

Modelluntersuchungen zu turbulenten Strukturbildungsprozessen in Raumluftströmungen mittels Experimenten an komprimiertem Schwefelhexafluorid in einem weiten Kennzahlbereich

Die genaue Vorhersage der räumlichen Verteilung von Temperatur und Strömungsgeschwindigkeit im Inneren von Gebäuden sowie in Passagierkabinen von Flugzeugen, Bahnen, Reisebussen und Personenkraftwagen ist für die Gesundheit und das Wohlbefinden von Menschen sowie für den sparsamen Einsatz von Energie zum Heizen und Klimatisieren von entscheidender Bedeutung. Obwohl die Strömungsmechanik bei der Erforschung dieser Strömungen - den sogenannten Raumluftströmungen - sowohl in experimenteller als auch in numerischer Hinsicht in den vergangenen zehn Jahren große Fortschritte erzielt hat, ist es bis heute noch nicht möglich, Strukturbildungsprozesse in diesen Strömungen auf räumlichen Skalen von mehreren Metern und auf zeitlichen Skalen von mehreren Stunden mit hinreichender Genauigkeit vorherzusagen. Die physikalische Ursache für diese Schwierigkeit liegt darin begründet, dass es sich hierbei um eine Überlagerung von erzwungener und natürlicher thermischer turbulenter Konvektion handelt, die als gemischte Konvektion oder Mischkonvektion bezeichnet wird. Dieser Strömungstyp ist im Gegensatz zu rein erzwungener oder rein thermischer Konvektion notorisch schwer vorherzusagen. Das Ziel des vorliegenden Projektes besteht darin, den Mangel an Wissen über Strukturbildungsprozesse in gemischter turbulenter Konvektion zu überwinden, wobei sich die untersuchte Geometrie an Fragestellungen der Raumluftströmung orientiert. Nachdem der Antragsteller im Rahmen des von 2007 bis 2012 laufenden DFG- Antrages Strukturbildung turbulenter Mischkonvektion in Räumen und Passagierkabinen erstmalig die Machbarkeit einer realitätsgetreuen Nachbildung von Raumluftströmungen in einem verkleinerten Modellmaßstab von 1 zu 10 durch Verwendung des Gases Schwefelhexafluorid bei 5 bar nachgewiesen hat, steht die im Paketantrag errichtete Versuchsanlage SCALEX nunmehr für umfassende experimentelle Untersuchungen zur Verfügung. Aufbauend auf den im Paketantrag geleisteten Vorarbeiten besteht das spezielle Ziel des vorliegenden Projektes in der experimentellen Analyse dreier Strukturbildungsaspekte turbulenter Mischkonvektion für eine bislang in keinem Laborexperiment erreichte Breite des Parameterbereiches von Reynolds- und Rayleighzahlen. Hierzu sollen in einem ersten Schritt räumliche Symmetriebrechungsprozesse, in einem zweiten Schritt Hystereseprozesse und in einem dritten Schritt zeitabhängige Strukturwandlungen erforscht werden. Obwohl das Projekt erkenntnisorientiert ist und nicht der Lösung konkreter Raumluftströmungsprobleme dient, ist die untersuchte Geometrie der Passagierkabine eines Verkehrsflugzeuges nachempfunden. Somit kommen die zu gewinnenden grundlegenden Erkenntnisse langfristig der Luftfahrt- sowie der Schinen- und Straßenfahrzeugforschung zugute.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Einfluss von Jet-Front Systemen in der oberen Troposphäre auf die mesoskalige Struktur der Tropopauseninversionsschicht und Stratosphären-Troposphären Austausch (MESO-TIL)

Der vorliegende Antrag ist der HALO Mission WISE zuzuordnen. Ein besonderes Augenmerk liegt dabei auf der Bildung der Tropopauseninversionsschicht (TIL) und deren Einfluss auf Stratosphären-Troposphären Austausch (STE) auf der Mesoskala. Diesem Projekt dienen idealisierte Studien der TIL in baroklinen Lebenszyklen als Grundlage. Die Hauptziele sind dabei die Überprüfung der Ergebnisse der idealisierten Studien zur TIL Bildung genauso wie ein erweitertes Verständnis der Prozesse, die zum STE auf der Mesoskala beitragen. Dabei soll auf drei wissenschaftliche Fragestellungen genauer eingegangen werden: (1) Wie stark schwankt die TIL in ihrem Auftreten über dem Nordatlantik, vor allem im Bereich barokliner Lebenszyklen und im Bereich von STE? (2) Welche Prozesse liefern den größten Beitrag zur TIL auf der Mesoskala und welchen Einfluss hat dies auf STE? (3) Wie groß ist der Beitrag von klein-skaligen Wellen in der unteren Stratosphäre auf die TIL Bildung und die Ausdehnung der extratropischen Mischungsschicht? Eine Kombination von Methoden wird verwendet werden um diese Fragen zu beantworten. Analysedaten des EZMW werden zusammen mit Lagrangeschen Methoden benutzt, um die TIL und STE über dem Nordatlantik zu untersuchen. Der Nordatlantik ist das Gebiet, das auch während WISE untersucht werden soll. Darüber hinaus sollen für WISE hoch aufgelöste Modellsimulationen mit dem neuen numerischen Wettervorhersagemodell ICON durchgeführt werden. Dabei sollen zum einen die Beiträge diverser Prozesse auf die Bildung der TIL am Beispiel von realen Zyklonen und Antizyklonen untersucht werden. Des Weiteren sollen die Modelldaten zusammen mit Beobachtungsdaten verwendet werden um den Einfluss der TIL und von klein-skaligen Wellen auf die vertikale Ausdehnung der extratropischen Mischungsschicht zu bestimmen.

Lokale stochastische Subgitterskalenmodellierung in der effizienten Simulation der geophysikalischen Strömungsdynamik

Es gibt konzeptionelle Gründe, Interesse an effizienten Atmosphärenmodellen zu haben, weil diese tiefere Einblicke in der Atmosphärendynamik erlauben, z.B. in Hinsicht auf Klimavariabilität. Solche Modelle sind aber auch ein nützliches Werkzeug bei Untersuchungen der Klimasensitivität oder des Paläoklimas, wo sehr viele oder sehr lange Integrationen benötigt werden und somit die Recheneffizienz eine wichtige Rolle spielt. Besonders bei diesen Anwendungen muss darauf Wert gelegt werden, dass die unvermeidlichen Subgitterskalenparametrisierungen möglichst viel auf ersten Prinzipien basieren. Die stochastische Modenreduktion (SMR) bietet hier eine Strategie, bei der ein großer Teil der Parametrisierung auf Papier hergeleitet wird, wenn bestimmte Terme, die Wechselwirkungen zwischen nichtaufgelösten Moden beschreiben, durch einen einfachen stochastischen Prozess modelliert werden können. In früheren Anwendungen der SMR wurden die reduzierten Atmosphärenmodelle immer im Spektralraum formuliert. Somit koppelt die dazugehörige globale subgitterskalige Parametrisierung alle aufgelösten Moden miteinander. Letztes begrenzt die Anwendbarkeit der Methode auf niedrigdimensionale Systeme. Um dieses Problem zu umgehen, ist unlängst eine Implementierung der SMR für gitterbasierte Raumdiskretisierungen entwickelt worden, die in einer lokalen Parametrisierung resultiert. Diese Strategie wurde bis jetzt nur im Rahmen der Burgersgleichung getestet. Das vorgeschlagene Projekt soll signifikant dazu beitragen, die lokale SMR auf realistische Modelle der Atmosphärendynamik anzuwenden. Dabei sollen subgitterskalige Parametrisierungen für die barotrope Vorticitygleichung und für die Flachwassergleichungen auf der f-Ebene konstruiert werden. Beide Modelle beinhalten wesentliche Eigenschaften, die berücksichtigt werden müssen, wenn man die lokale SMR auf die allgemeinen Gleichungen für die Beschreibung der Atmosphärendynamik anwenden will. Die neuen subgitterskaligen Parametrisierungen sollen folgende Kriterien erfüllen: i) sie sollen systematisch aus den Modellgleichungen unter einer relativ kleinen Anzahl von Grundannahmen hergeleitet werden ii) sie sollen so konsistent wie möglich mit den Erhaltungseigenschaften der Gleichungen sein und iii) sie sollen eine minimale (falls möglich gar keine) Anpassung an Daten der aufgelösten Skalen verwenden. In der Klimamodellierung existiert ein großer Bedarf an physikalisch basierten und auflösungsunabhängig formulierten stochastischen Parametrisierungen. Die Entwicklung von subgitterskaligen Parametrisierungen mittels der SMR, wie in diesem Projekt vorgeschlagen, wird zu solchen Verfahren beitragen. Die Turbulenzparametrisierung in grob auflösenden Simulationen ist ein anderes Feld, das von einer solchen Entwicklung profitieren kann.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Ökologische Durchgängigkeit, Erzeugung von Aufstiegskorridoren im Unterwasser von Querbauwerken an Bundeswasserstraßen

Im Rahmen des Projekts wird die Auswirkung verschiedener Dotationswassermengen auf die Ausbildung einer signifikanten Leitströmung und somit geeigneten Aufstiegskorridoren von FAA im Unterwasser von Querbauwerken untersucht. Die mit den Strömungsmustern verbundenen hydraulischen Parameter (Geschwindigkeitsgradienten, Turbulenz) werden für unterschiedliche geometrisch-hydraulische Konstellationen (Einstiegsdimensionen, Fließgeschwindigkeiten, Dotationswassermengen) untersucht und mit den Fischbewegungen im Nahbereich der Einstiege verschnitten. Aus den Ergebnissen können die für die Erzeugung von signifikanten Leitströmung und Aufstiegskorridoren optimalen Dotationswassermengen entwickelt werden.

Entwicklung flacher Sedimentfallen

Nachdem gezeigt worden ist, das man im bewegten Wasser von Flachseen, Kanaelen, Altwaessern und Totzonen mit zylindrischen Sedimentfallen keine realistischen Sedimentationsraten messen kann, ging es darum, Alternativen zu entwickeln und die Bereiche anzugeben, in denen man mit den traditionellen Zylinderfallen noch weiterhin gute Ergebnisse zu erwarten hat. Letzteres wurde mit Hilfe eines mathematischen Modells getan, das das Wechselspiel von Partikelnettoproduktion, turbulenter Vermischung und Sedimentation beschreibt. Es zeigte sich, dass die Zylinderfalle in tiefen Gewaessern unterhalb der trophogenen Zone und dort, wo die Partikel nur geringe kohaesive Eigenschaften besitzen, einsetzbar sind. Da sich organisches Material auch kohaesiv verhaelt, sind voellig fehlerlose Messergebnisse nur in speziellen Faellen zu erwarten. Um den Mangel an geeigneten Messgeraeten insbesondere fuer Flachseen und Fluesse zu beseitigen, wurde das Messprinzip der Tellerfallen entwickelt. Es wurde eine Konzeption ausgebaut, die ab 1996 im Rahmen eines BMBF-Projektes zu Geraeten mit neuen Moeglichkeiten fuehren soll.

Hochaufgelöste Messungen von Turbulenz, Wolkenmikrophysik, und Strahlungsabkühlungsraten in der Einmischungszwischenschicht von marinen Stratocumulus-Wolken

Obwohl bisher schon viele Fortschritte im allgemeinen Verständnis von Mischungs- und Strahlungsprozessen in Stratocumulus (Sc) gemacht wurden, verursachen wolkenbedingte Rückkopplungseffekte von Sc Wolken erhebliche Unsicherheiten in Klimaprojektionen. Diese Probleme werden teilweise verursacht durch eine unrealistische Beschreibung der feinskaligen Mischungsprozesse, die hauptsächlich am Oberrand der Wolken stattfinden. Die Strahlungs-Abkühlung am Wolkenoberrand ist eng mit dynamischen und turbulenten Wolkenprozessen verbunden. Abkühlung am Oberrand der Wolken verursacht ein Absinken. Diese Vertikalbewegungen bedingen Turbulenz wodurch trockene und warme Umgebungsluft in die Wolke eingemischt wird, wodurch sich die damit verbundene Verdunstungsabkühlung erhöht. Zur Untersuchung dieser Vorgänge schlagen wir folgende wesentlichen Projektziele vor: (a) die Verbesserung des Verständnisses der feinskaligen Struktur der Einmischungsinversionszwischenschicht (entrainment interface layer, EIL), (b) die Quantifizierung des Einflusses der EIL auf die Einmischung trockener und warmer Umgebungsluft in Sc Wolken, (c) die Bewertung der Rolle von Strahlungserwärmungs- und Abkühlungsraten bei Einmischungsprozessen in Sc Wolken. Um diese Ziele erreichen zu können, werden Beobachtungen vorgeschlagen mit den zwei kombinierten, hubschraubergetragenen Messsystemen ACTOS (Airborne Cloud Turbulence Observation System) und SMART--HELIOS (Spectral Modular Airborne Radiation measurement sysTem). Die Messungen finden auf den Azoren statt. Beide Messsysteme werden durch einen langsamfliegenden Hubschrauber getragen. Das kombinierte Messsysteme-Paket ermöglicht in-situ Messungen von dynamischen, thermodynamischen, Wolken-mikrophysikalischen, und Strahlungsparametern mit hoher örtlicher Auflösung (überwiegend im cm-Bereich). Kein anderes Messsystem weltweit erreicht diese hohe Auflösung, die allerdings unabdingbar ist für die Erreichung der Projektziele ist. Dies trifft insbesondere auf die Vermessung der Vorgänge in der EIL zu, welche meist eine vertikale Dicke von nur 10 m aufweist.

Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt C05: Vorhersageunsicherheit von Spitzenböen im Bereich europäischer Tiefdruckgebiete im Winter

Dieses Projekt zielt auf eine systematische Quantifizierung der Vorhersageunsicherheit für Spitzenböen über Deutschland ab, die im Zusammenhang mit Tiefdruckgebieten während des Winterhalbjahres auftreten. Das allgemeine Vorgehen dabei ist, verschiedene Quellen für Unsicherheit gemäß der angeregten Skalen (synoptisch bis Grenzschichtturbulenz) zu unterscheiden. Dazu werden Modelldaten (z.B. globale und regionale Ensemblevorhersagen, Grobstruktursimulationen) sowie Beobachtungsdaten (z.B. Messungen von neuartigen Doppler-Lidarsystemen, verschiedene Routinebeobachtungen) verwendet.

See-Atmosphäre Wechselwirkungen und Energieflusspfade in kleinen Seen

Windgetriebene Wasserbewegungen sind eine wichtige physikalische Charakteristik von Seen und haben einen großen Einfluss auf deren Ökologie und Biogeochemie. Windschub an der Wasseroberfläche erzeugt eine turbulent durchmischte Oberflächenschicht, Oberflächenwellen, grossskalige Strömungen, sowie interne Wellen, die Energie in größere Tiefen transportieren können. Die oberflächliche Impulsübertragung vom Wind auf Wasser und die daraus resultierende Intensität der Grenzschichtturbulenz beeinflusst auch den Austausch von Wärme und gelösten Gasen zwischen der Seeoberfläche und der Atmosphäre sowie die Verdunstungsrate. Die Prozesse welche den Austausch zwischen See und Atmosphäre kontrollieren wurden vor allem im Ozean und bei hohen Windgeschwindigkeiten untersucht. Wenig ist über den Zusammenhang zwischen Windgeschwindigkeit und Impulsübertragung, sowie über die Wechselbeziehungen zu anderen Transferkoeffizienten in kleinen Seen bekannt, wo die Einwirklänge und Geschwindigkeit des Windes typischerweise gering sind. In diesem Projekt stellen wir kürzlich durchgeführte atmosphärische Eddy-Covariance (EC) Messungen von Impuls, Wärme, Wasserdampf und Gasflüssen über 10 verschiedenen kleinen Seen zusammen. Dieser einzigartige Datensatz wird dazu verwendet, um die Abhängigkeit der Impulsübertragung vom Wind auf Wasser von der Windgeschwindigkeit und Einwirklänge in kleinen Seen zu analysieren und mechanistische Beziehungen zwischen den verschiedenen Übertragungskoeffizienten abzuleiten. Die Energieflusspfade innerhalb von Seen werden durch die Ergänzung laufender atmosphärischer EC-Messungen mit umfangreichen Messungen von Wellen, Strömungen und Turbulenz in drei Seen untersucht werden. Wir werden die Aufteilung der kinetischen Energie in verschiedene Arten von Strömungen und ihren Flusspfad von Erzeugung zu Dissipation als Funktion der Windgeschwindigkeit, Seegröße und vertikale Dichteschichtung analysieren. Als Ergebnis bieten wir ein umfassendes mechanistisches Verständnis der Energieflusspfade in kleinen Seen in Anhängigkeit des atmosphärischen Antriebs. Die Projektergebnisse werden die aktuellen Möglichkeiten zur Modellierung und Vorhersage von See-Atmosphäre Wechselwirkungen verbessern und zu einer Reihe von aktuellen Forschungsfragestellungen in Biogeochemie und Gewässerökologie beitragen.

1 2 3 4 587 88 89