Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.
Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.
Das Ziel dieses Projektes ist die Untersuchung der zeitlichen Variabilität in der Energie von internen Wellen und der Stärke von vertikaler Vermischung in Abhängigkeit des Nordatlantikstroms und dem damit verbundenen Wirbelfeld. Hierfür werden 5-6 Jahre von Strömungsmesserdaten und Temperatur/Leitfähigkeitsmessungen von drei Verankerungen entlang eines Schnittes westlich des Mittelatlantischen Rückens (MAR) sowie LADCP/CTD Daten von fünf Schifffahrten genutzt. Konkrete wissenschaftliche Ziele dabei sind:- Erstellung von Zeitserien der Energie in internen Wellen unter Benutzung der Verankerungszeitreihen von Strömung und Schichtung- Untersuchung der Zeitskalen auf denen Veränderungen in der Energie interner Wellen stattfinden. Mögliche Ursachen für Variabilität sind der Windeintrag, Position des Nordatlantikstroms und Wirbel- Identifizierung von Prozessen, welche die beobachteten internen Wellen generieren, wie z.B. Gezeiten, Stürme, Jahresgang, Wirbel, die Arme des Nordatlanikstroms (Verhältnis von lokalen zu großräumigen Erzeugungsmechanismen)- Bestimmung der Vermischungsraten (Temperaturinversionen, Thorpe Skalen, Feinstrukturparameterisierung) in Abhängigkeit der variablen Hintergrundbedingungen Hierfür werden zunächst Spektren potentieller und kinetischer Energy der internen Wellen auf ihre Abhängigkeit von veränderlichen Hintergrundbedingungen wie z.B. Wind, Gezeiten, Wirbel, Schichtung und Variabilität im Nordatlantikstrom sowieso des Einflusses der Topographie untersucht. Die instrumentelle Ausstattung der Verankerungen seit Sommer 2012 erlaubt zusätzlich die Approximation der internen Wellen durch vertikale Moden und damit verbunden die Berechnung von Energieflüssen, welche wichtige Informationen über die Menge und die Variabilität in der Energie, die in internen Wellen im Nordatlantik transportiert wird, liefern. Außerdem geben diese so gewonnenen Energieflüsse in Kombination mit der Berechnung von Ausbreitungspfaden von internen Wellen, welche am mittelatlantischen Rücken erzeugt wurden, Aufschluss über die relative Bedeutung der Topographie des MAR für die Erzeugung von internen Wellen. Beginnend vom Sommer 2015 werden die Analysen erweitert, indem Temperatur- und Druckdaten mit hoher Tiefenauflösung für die Berechnung von Thorpe Skalen und Dissipationsraten und deren zeitlichen Variabilität genutzt werden. Weitere Informationen über die zeitliche und räumliche Variabilität der Vermischungsraten im Nordatlantik werden durch die Analyse von Diffusionsraten, die anhand von LADCP/CTD Daten und einer Feinstrukturparameterisierung berechnet werden, erlangt. Dies liefert weitere Aufschlüsse über die dominanten Prozesse in der Erzeugung von internen Wellen und vertikaler Vermischung im Nordatlantik, sowie deren zeitlicher und räumlicher Variabilität.
Es gibt konzeptionelle Gründe, Interesse an effizienten Atmosphärenmodellen zu haben, weil diese tiefere Einblicke in der Atmosphärendynamik erlauben, z.B. in Hinsicht auf Klimavariabilität. Solche Modelle sind aber auch ein nützliches Werkzeug bei Untersuchungen der Klimasensitivität oder des Paläoklimas, wo sehr viele oder sehr lange Integrationen benötigt werden und somit die Recheneffizienz eine wichtige Rolle spielt. Besonders bei diesen Anwendungen muss darauf Wert gelegt werden, dass die unvermeidlichen Subgitterskalenparametrisierungen möglichst viel auf ersten Prinzipien basieren. Die stochastische Modenreduktion (SMR) bietet hier eine Strategie, bei der ein großer Teil der Parametrisierung auf Papier hergeleitet wird, wenn bestimmte Terme, die Wechselwirkungen zwischen nichtaufgelösten Moden beschreiben, durch einen einfachen stochastischen Prozess modelliert werden können. In früheren Anwendungen der SMR wurden die reduzierten Atmosphärenmodelle immer im Spektralraum formuliert. Somit koppelt die dazugehörige globale subgitterskalige Parametrisierung alle aufgelösten Moden miteinander. Letztes begrenzt die Anwendbarkeit der Methode auf niedrigdimensionale Systeme. Um dieses Problem zu umgehen, ist unlängst eine Implementierung der SMR für gitterbasierte Raumdiskretisierungen entwickelt worden, die in einer lokalen Parametrisierung resultiert. Diese Strategie wurde bis jetzt nur im Rahmen der Burgersgleichung getestet. Das vorgeschlagene Projekt soll signifikant dazu beitragen, die lokale SMR auf realistische Modelle der Atmosphärendynamik anzuwenden. Dabei sollen subgitterskalige Parametrisierungen für die barotrope Vorticitygleichung und für die Flachwassergleichungen auf der f-Ebene konstruiert werden. Beide Modelle beinhalten wesentliche Eigenschaften, die berücksichtigt werden müssen, wenn man die lokale SMR auf die allgemeinen Gleichungen für die Beschreibung der Atmosphärendynamik anwenden will. Die neuen subgitterskaligen Parametrisierungen sollen folgende Kriterien erfüllen: i) sie sollen systematisch aus den Modellgleichungen unter einer relativ kleinen Anzahl von Grundannahmen hergeleitet werden ii) sie sollen so konsistent wie möglich mit den Erhaltungseigenschaften der Gleichungen sein und iii) sie sollen eine minimale (falls möglich gar keine) Anpassung an Daten der aufgelösten Skalen verwenden. In der Klimamodellierung existiert ein großer Bedarf an physikalisch basierten und auflösungsunabhängig formulierten stochastischen Parametrisierungen. Die Entwicklung von subgitterskaligen Parametrisierungen mittels der SMR, wie in diesem Projekt vorgeschlagen, wird zu solchen Verfahren beitragen. Die Turbulenzparametrisierung in grob auflösenden Simulationen ist ein anderes Feld, das von einer solchen Entwicklung profitieren kann.
Schwerewellen (GWs) sind zu kleinskalig, um in den heutigen Wetter- und Klimamodellen aufgelöst zu werden. Sie müssen daher parametrisiert werden, da sie einen starken Einfluss auf die Dynamik der großen Skalen haben. Parametrisierungen existieren für orographisch und konvektiv erzeugte GWs, während für die GW-Quellen entlang großskaliger Jets noch keine etablierte Parametrisierung vorliegt. Die Quellen resultieren aus einer spontanen Imbalance (SI) der großskaligen quasi-geostrophischen Strömung. Die Untersuchung von Schwerewellenabstrahlung durch SI ist schwierig, da die GWs in ein sehr komplexes zeitabhängiges Strömungsfeld eingebettet sind, mit einer großen Zahl von interagierenden Prozessen. Auch die Validierung von Parametrisierungen wird dadurch erschwert. Daher kombinieren wir Theorie und numerische Modellierung mit ergänzenden Laborexperimenten. Laborexperimente garantieren eine Reproduzierbarkeit der betrachteten großskaligen Strömungssituation. Die direkte Korrespondenz zwischen den experimentellen Daten und den Modelldaten und die erwähnte Reproduzierbarkeit machen das Laborexperiment zu einem idealen Prüfstand für Parametrisierungen und für die Untersuchung klimarelevante Prozesse. Das differenziell beheizte rotierende Zylinderspalt-Experiment, welches an der BTU (Brandenburg Technische Universität Cottbus-Senftenberg) aufgebaut und betrieben wird, stellt die Referenzdaten für Benchmark-Simulationen an der GU-F (Goethe Universität Frankfurt) und dem IAP (Leibniz Institut für Atmosphärische Physik, Kühlungsborn) bereit. Dabei stehen Experimente im Vordergrund, die zeigen sollen, welche baroklinen Strömungen eine besonders ausgeprägte GW-Abstrahlung aufweisen. Ergänzend dazu werden idealisierte numerische Simulationen an der GU-F und dem IAP durchgeführt, um die Variabilität der GWs und den Abstrahlungsprozess zu untersuchen. Wichtig ist dabei, einen Zusammenhang zwischen verschiedenen großskaligen Strömungen und der mesoskaligen GW-Quelle herzustellen und diesen Zusammenhang mittels grob aufgelöster Wellenstrahlenmodelle zu validieren. Ziel ist es, eine skalenabhängige SI-Parametrisierung zu konstruieren. Diese Parametrisierung soll mit Hilfe der Labor-Referenzdaten validiert werden. Begleitet wird dies von einer Analyse grob- und feinaufgelöster Daten aus UA-ICON Simulationen. Schließlich soll die Parametrisierung an das Wellenstrahlenmodell MS-GWaM angekoppelt werden, welches in UA-ICON implementiert ist.
Messung der Turbulenzeigenschaften von Flammen (Schwankungsgroessen/Laengenmasse), Einfluss auf Reaktionsverlauf; weitraeumig und mikroskopisch; Reaktionen nur in Zonen hoechster Temperatur; dort Einstellung der Gleichgewichte; u.a. wichtig fuer Bildung schaedlicher Zwischen- und Endprodukte.
Im Rahmen des 'Mesoscale Alpine Programme' (MAP), einer internationalen kooperativen Forschungsinitiative zahlreicher Institutionen europäischen und außereuropäischer Länder zum Studium intensiver Wettervorgänge im Alpenraum, ist die Erforschung des Föhns als ein Schwerpunkt festgelegt worden. Das Alpenrheintal von seinem Ursprung an den Pässen des Alpenhauptkamms bis zum Bodensee, einschließlich der Seitentäler, wurde von den internationalen MAP Gremien zum Zielgebiet ausgewählt. Diese Region wird in einer gemeinsamen Aktion im kommenden Jahr von einem dichten Beobachtungsnetz überzogen um den Atmosphärenzustand während interessanter meteorologischer Situationen zu erfassen. Der vorliegende Forschungsantrag soll einer der österreichischen Beiträge zu dieser internationalen Initiative werden. Er ist so angelegt, dass er einerseits die Messungen der zahlreichen anderen Forschergruppen durch zusätzliche Messungen ergänzt, anderseits werden eigene Forschungsziele verfolgt. Die entsprechenden Fragestellungen sollen dann anhand des gemeinsamen MAP Datensatzes studiert werden. Das vorliegende Projekt verfolgt zwei Hauptziele, nämlich (1) die Erfassung der kleinskaligen räumlich zeitlichen Variabilität und des Lebenszyklus von Föhnepisoden in Bodennähe, und (2) die Beobachtung der Struktur der Föhnströmung in der unteren und mittleren Troposphäre, wobei vor allem auf die Wechselwirkung zwischen den Strömungsprozessen in Tälern verschiedener Länge, Breite und Richtung eingegangen werden soll. Als weiteres Ziel ist die Qualitäts-Evaluierung der erhobenen Messdaten zu nennen, die mittels eines ausgeklügelten Verfahrens durchgeführt werden soll, welches in der jüngsten Zeit von den Antragstellern entwickelt wurde. Die qualitätsgeprüften Messungen sollen schließlich dem internationalen MAP Datenzentrum für die weitere Bearbeitung zur Verfügung gestellt werden, von wo die Antragsteller dann als Gegenleistung auch die Beobachtungsdaten der anderen beteiligten Forschergruppen beziehen können. Das Alpenrheingebiet wurde deshalb als Zielgebiet ausgewählt, weil dort klimatologisch eine der höchsten Wahrscheinlichkeiten für Föhn im Alpenraum vorliegt und die Länder Österreich, Schweiz und Deutschland betroffen sind. Außer an wenigen langjährigen Klimastationen ist bisher wenig über die kleinräumige Struktur von Föhn in dem von den Antragstellern ausgewählten Gebiet bekannt, nämlich dem Walgau von Bludenz bis Feldkirch und dem Brandner Tal, südlich von Bludenz. Eine bessere Kenntnis und vor allem eine besser Vorhersage von Föhn in diesem Gebiet ist von großem praktischem Wert, da immer wieder Schäden durch Föhn (z. B. Sturmschäden) auftreten und plötzlich und unerwartet auftretende Windböen und Turbulenz eine beträchtliche Gefahr für die Luftfahrt, insbesondere für motorlose Fluggeräte darstellt. usw.
Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.
Die Forschungsarbeiten der Abteilung Regionale Ozeanographie werden sich weiterhin auf die physikalischen Prozesse in den oberen Schichten des offenen Ozeans, der Warmwassersphaere, konzentrieren. Dahinter steht die Notwendigkeit, die Transportprozesse zu verstehen, die den Einfluss des Ozeans auf die atmosphaerischen Klimaaenderungen fuer die Zeitskala des World Climate Research Programme bestimmen. Da diese Zeitskala den Bereich Wochen bis Monate umfasst, ist eine umfangreiche Expeditionstaetigkeit noetig. Neuentwickelte Messmethoden sollen dabei zum Einsatz kommen, so u.a. ein geschlepptes, vertikal undulierendes Geraet zur Erfassung der Dichteschichtung, ein akustisch arbeitendes Geraet zur Bestimmung der vertikalen Geschwindigkeitsverteilung in der ozeanischen Deckschicht sowie satelliten- bzw. funkgeortete Driftbojen. Begleitet wird die Messtaetigkeit durch die Entwicklung von Modellen (empirisch, diagnostisch, prognostisch). Schwerpunkte der Untersuchungen werden sein: - theoretische Untersuchungen zur geophysikalischen Turbulenz und ihre Anwendung auf Transportprozesse in der ozeanischen Warmwassersphaere, - Ursachen und Auswirkungen der Jahresschwankungen von Baroklinitaet und Haloklinitaet, - Entstehung ozeanischer Fronten und ihre Bedeutung fuer turbulente Transportprozesse, - Modellierung der Konvektion in der Deckschicht unter besonderer Beruecksichtigung des Tagesganges, - Struktur und Transporte des Nordatlantischen Stromes, - wissenschaftliche Analyse von Datensaetzen des Welt-Datenzentrums sowie von Expeditionen, insbesondere GATE 1974, JASIN 1978, FGGE 1979. Das Forschungsprogramm ist integraler Bestandteil des SFB 133.
Der erste Teil des Forschungsvorhabens (Start April 2006) wurde erfolgreich abgeschlossen. Im folgenden werden die Erfolge des ersten Projektabschnitts und die Ziele und Ergebnisse des zweiten Projektabschnitts zusammengefasst. 1. Abschnitt: Zu Beginn des Projekts waren CFD-Simulationen von zweiphasigen flüssig-flüssig betriebenen Extraktionskolonnen in der Literatur quasi nicht vorhanden. Im ersten Teil wurden daher zunächst zweiphasige CFD.Simulationen mit konstanten Tropfendurchmessern ohne Berücksichtigung von Populationsbilanzen erfolgreich durchgeführt. In beiden CFD Tools konnten die ein- und zweiphasigen Strömungsbedingungen in einem Rotating Disc Contactor vorhergesagt werden (1,2). Ein- und zweiphasige Particle Image Velocimetry Messungen ermöglichten einen Vergleich und eine Validierung der Simulationen. Im nächsten Schritt wurden Methoden zur Lösung der Populationsbilanzen in die CFD codes integriert. Die Standardvorgehensweise ist, dass für jede Phase in CFD ein Fluid verwendet wird (Two-Fluid Model) und sich die disperse Tropfenphase mit dem Sauterdurchmesser (d32) bewegt, der mit Hilfe der Populationsbilanzen berechnet wird. Die klassischen Lösungsmethoden, Klassenmethode und Momentenmethode (Quadrature Method of Moments), wurden im Rahmen von Fluent untersucht (4). In diesem Zusammenhang wurden auch mehrere Literaturmodelle für Zerfall und Koaleszenz der Tropfen in Fluent integriert und verglichen. Es zeigte sich, dass eine Vorhersage der Tropfengröße in einer 5 Compartment Sektion eines RDC Extraktors, bei richtiger Wahl der Modelle, möglich ist. Bei der Kopplung zwischen CFD und PBM ist die Momentenmethode vorzuziehen, da hier der Rechenaufwand wesentlich geringer ist, bei besserer Genauigkeit des Sauterdurchmessers. Sowohl in Fluent als auch in FPM wurde die Sectional Quadrature Method of Moments (SQMOM) implementiert (5-7). Die SQMOM als eine adaptive Methode ist für die Verwendung in CFD sehr gut geeignet. Im Gegensatz zum Zwei-Fluid CFD-Modell können im Multi-Fluid Modell tropfengrößenspezifische Aufstiegsgeschwindigkeiten wiedergegben werden. 2. Abschnitt: Während die reine Verknüpfung und die Vorhersage der Zweiphasenströmung im ersten Forschungsabschnitt realisiert wurden, sollen im weiteren Forschungsvorhaben die Vorhersagemöglichkeiten weiterentwickelt werden. Ziele sind hierbei ein Turbulenzmodell für FPM zu realisieren und zu validieren, mit dessen Hilfe Zerfall und Koaleszenz der Tropfen modelliert werden. Am Lehrstuhl f. Thermische Verfahrenstechnik sind Untersuchungen zur Messung der Turbulenz und zum Zerfall der Tropfen geplant. Eine integrierte Betrachtung von experimentellen und simulierten Turbulenzgrößen zusammen mit Zerfall und Koaleszenz der Tropfen soll zu einer Verbesserung der Vorhersage führen. Die Berücksichtigung von Stofftransport mit Hilfe eines bivariaten Populationsbilanzmodells wird die Beschreibung des Stoffaustauschs ermöglichen. (Text gekürzt)
| Origin | Count |
|---|---|
| Bund | 888 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 887 |
| License | Count |
|---|---|
| offen | 888 |
| Language | Count |
|---|---|
| Deutsch | 751 |
| Englisch | 233 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Keine | 635 |
| Webseite | 253 |
| Topic | Count |
|---|---|
| Boden | 496 |
| Lebewesen und Lebensräume | 606 |
| Luft | 613 |
| Mensch und Umwelt | 882 |
| Wasser | 524 |
| Weitere | 888 |