API src

Found 888 results.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Aus Bohrlochmessungen abgeleitete physikalische Eigenschaften, in situ Struktur und Zyklizität von 1300 m unterjurassischer Tonsteine in der ICDP-Bohrung Mochras, West-Wales

Das JET Projekt ist ein multidisziplinäres, internationales Großforschungsprojekt mit ca. 50 Wissenschaftlern aus 13 Ländern, das die Reaktion des Erdsystems an einer Schlüsselstelle ihrer Geschichte im Unterjura erforscht. Im Unterjura war die Erde ausgeprägten tektonischen, magmatischen und orbitalen Änderungen ausgesetzt, was u.a. dazu geführt hat, dass sich nach den Massensterben am Ende des Perm und der Trias die moderne Biosphäre etabliert hat. Eine 1,9 km tiefe Bohrung in Mochras, West Wales, ist geplant, um einen 1,3 km langen Kern zu gewinnen, der 27 Ma unterjurassische Sedimente beinhaltet. Das Hauptziel des JET Projektes ist es, einen einzigartigen Aufschluss des Unterjura geowissenschaftlich so zu bearbeiten, das er Maßstäbe für die Erforschung dieses erdgeschichtlich wichtigen Zeitraums setzt. Dies geschieht in einer Auflösung, die bisher nur fürs Känozoikum erreicht wurde. Zusammen mit bisherigen Daten und einem integrativen Modellansatz wird ein Datensatz über die Erde im Unterjura entstehen, der die dynamischen Prozesse dieser Zeit erklären kann. Die Interpretation der geophysikalischen Bohrlochmessungen, einigen zusätzlichen Messungen von physikalischen Eigenschaften an Kernproben im Labor sowie seismischen Reflexionsdaten konzentriert sich auf folgende Ziele, die Teile der übergeordneten JET Projekt-Strategie sind: - Die lithologische Charakterisierung der Sedimente inklusive der Bestimmung von lithologischen Grenzen basierend auf physikalischen Eigenschaften - Die Bestimmung der paläoklimatischen Geschichte dieser Sedimente - Die Beschreibung der Sedimentfazies und sedimentärer Zyklen; Kompaktion- Vermehrtes Verständnis über Neotektonik und rezente Tektonik in West Wales- Die Integration und Kalibrierung von seismischen Reflektionsprofilen und 3D geologischen Modellen rund um die Bohrung- Die Kalibrierung der Tiefenzuordnung von Kernmessungen an die bei den Bohrlochmessungen erhaltenen 'wahren' Tiefen - Die Maximierung des Kerngewinns in einer kostensparenden Art und Weise.

Modellierung klimabestimmender Vorgaenge und atmosphaerischer Austauschprozesse im mesoskaligen Bereich

Die Beeinflussung des regionalen Klimas und turbulenter Vermischungen von Luftverunreinigungen durch Inhomogenitaeten der Gelaendegestalt und der Bodeneigenschaften wird simuliert mit Hilfe der Verknuepfung des atmosphaerischen mesoskaligen Modells KAMM mit einem Erdbodenmodell. Ziel der Arbeiten sind dabei u.a. Erkenntnisse ueber instationaere Prozesse in der atmosphaerischen Grenzschicht, die Vorhersage des Lokalklimas durch entsprechende Parameterstudien, die Parametrisierung mesoskaliger Prozesse fuer Wetter- und Klimavoraussage-Modelle. Fuer die Beschreibung der Schadstoffausbreitung im mesoskaligen Bereich existiert das zusaetzliche Modell DRAIS, das durch Kopplung mit einem luftchemischen Modell so weiterentwickelt werden soll, dass damit auch das Auswaschen von Gasen und Aerosolpartikeln und deren nasse Deposition simuliert werden kann.

Land-Atmosphäre Feedback Analyse (LAFA)

Das Land-Atmosphäre Feedback Experiment (LAFE) kombiniert eine Vielzahl von passiven und abtastenden, aktiven Fernerkundungssystemen am Southern Great Plains (SGP)-Messstandort des US Atmospheric Radiation Measurement (ARM)-Programms. Diese Geräte erweitern die ARM-Messungen in eine Weise, dass Rückkopplungsprozesse zwischen der Landoberfläche und der Atmosphäre erforscht werden können. Die neuartige Synergie von Fernerkundungssystemen erfasst gleichzeitig Austauschprozesse an der Landoberfläche sowie horizontale und vertikale, turbulente Transportprozesse in der konvektiven atmosphärischen Grenzschicht (CBL). Der Einfluss der Heterogenität des Bodens und der Landbedeckung auf die Rückkopplungsprozesse wird mittels vertikaler Abtastungen untersucht. Das Experiment wird im August 2017 durchgeführt, da in diesem Zeitraum große Unterschiede zwischen den Flüssen über Feldern und unbewachsenem Boden beobachtet werden können. Insbesondere können aufgrund der hohen vertikalen und zeitlichen Auflösung dieser Gerätesynergie simultan mittlere Profile der Temperatur, der Feuchte und des Horizontalwinds, deren Gradienten, die Profile turbulenter Momente bis zur vierten Ordnung sowie fühlbare und latente Wärmeflussprofile nahe vom Boden bis zur Inversionsschicht gemessen werden. Im Rahmen dieses Land Atmosphären Feedback Analyse (LAFA)-Projekts soll der LAFE-Datensatz ausgewertet und für bestimmte Zeitperioden mit dem WRF-NOAHMP-Modellsystem um Ensemble-Simulationen in Bezug auf die Turbulenzparametrisierung bis zur Grobstruktur oder Large Eddy Simulation (LES)-Skala ergänzt werden. Basierend auf dieser Kombination von Beobachtungen und Modellsimulationen hat LAFA zwei Ziele: 1) Die Bestimmung von Profilen der turbulenten Momente der Feuchte, der Temperatur und des Vertikalwinds sowie von latenten Wärmeflussprofilen zur Erforschung neuer Ähnlichkeitsbeziehungen für Entrainmentflüsse und -varianzen. Dazu werden Zusammenhänge zwischen Flüssen, Varianzen und Gradienten untersucht. 2) Verifikation von LES und die Verbesserung von Turbulenzparametrisierungen in mesoskaligen Modellen. Dazu werden die LES direkt mit den LAFE-Daten in bisher unerreichter Detailliertheit verglichen. Die Resultate werden zeigen, unter welchen Bedingungen LES zur Analyse turbulenter Prozesse und für die Ableitung von Turbulenzparametrisierungen genutzt werden kann. Aus den Modellsimulationen auf der konvektiven Skala werden die Parameter und Variablen für die Turbulenzparametrisierung herausgezogen. Verschiedene lokale und nicht-lokale Parametrisierungen aus dem WRF-Physik-Paket werden verifiziert, spezifiziert und Verbesserungen vorgeschlagen bzw. entwickelt. Damit liefert LAFA neue Beiträge zum Prozessverständnis und zur genaueren Darstellung von Austauschprozessen und der Turbulenz in der nächsten Generation von Wettervorhersage-, Klima- und Erdsystemmodellen.

Experimentelle Untersuchung turbulenter Konvektion im Wasser

Turbulente Konvektion in Wasser wird in einer würfelförmigen Zelle mit optischen Methoden und lokaler Temperaturmessung untersucht, um sowohl kleinskalige kohärente Strukturen als auch langsame Variationen der großskaligen Zirkulation zu entdecken.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Die Bedeutung der Dynamik der MLT in mittleren und hohen Breiten auf das ionosphärische/thermosphärische Wetter (DYNAMITE)

Das ionosphärische/thermosphärische (I/T) System unterliegt zum einen solaren und magnetosphärischen Einflüssen und wird ebenfalls von zwar kleinskaligen, aber persistenten und darum bedeutenden Prozessen aus der mittleren Atmosphäre angetrieben. Gerade der zuletzt genannte Einfluss wird seit Jahren vermutet, es konnte jedoch bis jetzt kein klarer Beleg für die Kopplung gefunden werden. Alle Anregungen aus der mittleren Atmosphäre müssen sich durch die Mesosphäre und untere Thermosphäre (MLT) ausbreiten. Dabei wechselwirken die Wellen untereinander und koppeln an die I/T. Diese Kopplung kann (a) durch die direkte Ausbreitung von primären (oder sekundären) Wellen, und /oder (b) indirekt durch den E-Region-Dynamo erfolgen. Deshalb ist die MLT generell von Bedeutung für die dynamische Anregung der I/T, in mittleren und hohen Breiten tritt sie aber besonders hervor: (1) auf diesen Breiten wurden bislang wenige Untersuchungen des I/T Systems (z.B. der Gezeiten) durchgeführt, was auf die unzureichende Auflösung der meisten Satelliten zurückzuführen ist, und (2) aktuelle Studien mit globalen gekoppelten Atmosphären/Ionosphären Simulationen zeigen, dass gerade bei diesen Breiten die solaren und lunaren Gezeiten, die für viele elektrodynamische Effekte in niedrigen Breiten verantwortlich sind, besonders große Amplituden während stratosphärischer Erwärmungen (SSW) erreichen. Wir beantragen, die einzigartigen Radars und Lidars des IAP in mittleren und hohen Breiten zu nutzen, um den Grundstrom, die Wellen und deren Wechselwirkungen in der MLT zu charakterisieren. Die lokalen Radarwindbeobachtungen erfolgen kontinuierlich in einem Höhenbereich von 70 -100 km und können durch Lidarmessungen zu niedrigeren Höhen erweitert werden. Dies ermöglicht die Untersuchung der vertikalen Ausbreitung von Wellen im Wind und der Temperatur. Diese Studien werden zusätzlich durch Satellitendaten und Re-Analyse komplementiert, um sowohl regional als auch global den Antrieb durch die mittlere Atmosphäre zu erfassen. Die direkte Kopplung wird durch Vergleiche der saisonalen und jährlichen Gezeiten über den Radaren mit den thermosphärischen Daten der Satelliten aus den Überflügen mit polaren Orbits untersucht. Der Einfluss des E-Region-Dynamos wird mit Hilfe von Simulationen gekoppelter Atmosphären/Ionosphären-Modellen analysiert und beinhaltet die Anregung der lunaren Gezeit in Zeiträumen mit und ohne SSW. Die Modelle werden mit bodengebunden Beobachtungen und satellitengestützten ionosphärischen Daten verglichen und validiert. Neben vielen offenen Fragen zur Kopplung der MLT mit dem I/T-System, erwarten wir insbesondere Ergebnisse zu folgenden Fragen: (a) Wie wirkt sich die beobachtete Kurzzeitvariabilität der MLT auf Wellen und dem Grundstrom in Bezug zum I/T Wetter aus?, (b) Was sind die Charakteristiken der solaren und lunaren Gezeiten für verschiedene Strukturen des polaren Wirbels während SSW und welche Auswirkungen entsprechen diesen im I/T-System?

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean

Die Energietransfers der drei dynamischen Regime - kleinskalige Turbulenz, interne Schwerewellen und geostrophisch balancierte Strömung - sind fundamental für den Energiezyklus in der Atmosphäre und dem Ozean. Nichtsdestotrotz sind sie aber nicht gut verstanden und quantifiziert, und ihre Repräsentation in modernen Erdsystemmodellen ist unbefriedigend. Weil durch die Interaktion der dynamischen Regime die kleinsten Skalen ultimativ mit den größten Skalen durch eine Vielzahl von komplexen Prozessen verbunden sind, ist das Verständnis dieser Interaktionen wichtig um Ozean- und Atmosphärenmodelle zu konstruieren und um das Klima vorherzusagen. Die gegenwärtige Unkenntnis dieser Prozesse wird durch energetisch inkonsistente Modelle mit relativ großen Fehlern, aber auch durch Inkonsistenzen numerischer und mathematischer Natur, reflektiert. Wir glauben, dass es nun an der Zeit ist momentane Anstrengungen zu kombinieren, diese Defizite zu überwinden, neue Aktivitäten zu fördern die dynamischen Interaktionen zu verstehen und die Konsistenz von Ozean- und Atmosphärenmodellen zu verbessern. Die Arbeit des SFB/TRR soll die Modellfehler reduzieren, die Modellgüte verbessern, und ultimativ die Klimamodelle und Klimavorhersagen verbessern. Die wesentlichen Ziele dieses SFB/TRR sind - i. das notwendige Verständnis der Energietransfers zwischen den verschiedenen dynamischen Regimen in Atmosphäre und Ozean zu entwickeln, - ii. mit diesem Verständnis neue und konsistente Parametrisierungen zu entwickeln und in Modellen zu implementieren und zu testen, und - iii. numerischen Methoden mit konsistenter Energetik zu entwickeln. Es ist unsere Vision dadurch eine energetisch konsistente Beschreibung der Energiekonversionen im Klimasystem zu etablieren sowie physikalisch, mathematisch und numerisch konsistente Ozean- und Atmosphärenmodelle zu entwickeln.

Mischungsprozesse in dicht geschichteten Seen und ihre oekologische Relevanz

Mischung in dicht geschichteten Seen umfasst die folgenden Fragestellungen: Turbulenz in der Oberflaechendeckschicht (Wind-induzierte Turbulenz und konvektive Turbulenz); turbulente Diffusion als Funktion der Aktivitaet interner Wellen; Randmischung und Bodenreibung; horizontale Diffusion im offenen Wasser; Dichtestroemungen; geochemische Stofffluesse als Funktion der Mischungsprozesse; die Rolle der Biologie fuer chemische Dichtestabilisierung; Naehrstofffluesse in Seen.

CO2 Mofetten - Überwachung natürlicher CO2 Emissionen unter Verwendung eines Netzwerks aus low-cost Sensoren

Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Hochaufgelöste numerische Untersuchungen des Turbulenzeffektes auf die Struktur von nächtlichen Strahlungsnebeln

Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.

1 2 3 4 587 88 89