Bei den globalen Veränderungen und deren Mitigation durch Umstellung auf erneuerbare Energiequellen (z. B. Offshore-Wind- und Solarparks) müssen nachteilige Auswirkungen auf die Lebensräume im Meer besser erkannt und vermieden werden. So hat die internationale Fischereipolitik in letzter Zeit der marinen Aquakultur Vorrang eingeräumt, um die globale Nahrungsmittel- und Ernährungssicherheit vieler Staaten zu gewährleisten, ohne deren tatsächliche Auswirkungen auf die Meeresumwelt zu kennen. Das Verständnis der räumlichen Ökologie freilebender Tiere, einschließlich ihrer Verbreitung, Bewegungen und Wanderungen, ihrer Phänologie und ihrer Ernährung, führt zu einer besseren Bewirtschaftung und Erhaltung. So können beispielsweise Bemühungen zur Erhaltung wandernder Populationen, die sich ausschließlich auf Brutgebiete konzentrieren, diese Populationen nicht vor Bedrohungen entlang der Wanderrouten oder in Nicht-Brutgebieten schützen. Tierbewegungen und Wanderungen sind auch deshalb wichtig, weil sie das Verhalten, die Lebensweise und sogar die Anatomie vieler Arten beeinflussen. Darüber hinaus kann sich das Wander- und Ernährungsverhalten innerhalb und zwischen den Arten und Populationen unterscheiden. Daher ist es von entscheidender Bedeutung, die auf jeder dieser Ebenen genutzten Routen und Nichtbrutgebiete zu ermitteln, zumal sie auch mit unterschiedlichen Bedrohungen verbunden sein können. Darüber hinaus kann die Untersuchung verschiedener Populationen auch dazu beitragen, zu verstehen, ob die räumliche Ökologie der Art durch genetischen und/oder Umweltvariablen bestimmt wird. Eine Möglichkeit, die Bewegungen und die Verteilung außerhalb der Fortpflanzungszeit bei wandernden Arten zu bestimmen, und zwar neuerdings auch bei den kleinsten Arten, ist der Einsatz von Geolokatoren auf Lichtniveau. Darüber hinaus können feinräumige Bewegungen mit dem kleinsten GPS-Gerät von nur 0,95 g verfolgt werden. Sturmschwalben (Familien Hydrobatidae und Oceanitidae) sind die kleinsten Seevögel und für die Forscher normalerweise nur zugänglich, wenn sie während der Brutzeit in den Kolonien an Land sind. Daher ist es besonders schwierig, sie außerhalb dieses Zeitraums zu untersuchen, wenn sie sich irgendwo auf dem Meer aufhalten und während dieser Zeit wandern und normalerweise ihr Gefieder mausern. Von den meisten Arten ist bekannt, dass sie sich während der Brutzeit bevorzugt von Ichthyoplankton und Zooplankton ernähren, und oft wird diese Beute zusammen mit einem relevanten Anteil an Mikroplastik verzehrt. Obwohl die Interaktion von Sturmschwalben mit anthropogenen Offshore-Aktivitäten teilweise untersucht wurde, zielt der vorliegende Vorschlag darauf ab, wichtige Erkenntnisse über die globale räumliche Ökologie dieser wenig erforschten Taxa zu sammeln und dazu beizutragen, Wissenslücken in Bezug auf die biologische Vielfalt der Meere und die anthropogenen Einflüsse auf sie entlang der europäischen Meere zu bewerten.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Im Rahmen dieses Forschungsvorhabens werden die oekologischen Auswirkungen von nach Baum- und Straucharten und nach Pflanzendichten variierenden Vorwaeldern untersucht. Es wird insbesondere den Fragen der Schutzwirkungen, z.B. Spaetfrostschutz und der Beeinflussung des Wasser- und Naehrstosshaushaltes nach Sukzessionen, bzw. gezielt eingebrachten Vorwaldbaumarten, nachgegangen. In zusaetzlichen Versuchsparzellen (in nicht vom Sturm geschaedigten Fichtenparzellen und auf vegetationslos zu haltenden Flaechen) werden Vergleichsdaten gewonnen.
Küstendünen haben hohe ökonomische Werte und ökologische Funktionen und bieten einen natürlichen Küstenschutz gegen die See, besonders bei Stürmen. Im Unterschied zu Strand-Dünen Systemen an ausgedehnten gleichmäßigen Küsten führen benachbarte Elemente der Küstenmorphologie (Ebbdeltas, Tiderinnen) zu einer komplexen morphologischen Reaktion der Dünen auf veränderte Randbedingungen. Im Rahmen des Projekts sollen die Auswirkungen von Stürmen auf drei unterschiedliche Dünensysteme untersucht werden: 1) Isolierte Dünensysteme (IDS), 2) Barriere Insel Dünensystem (BDS) und 3) Ästuarine Dünensysteme (EDS). Ein neuartiger Ansatz verwendet eine schematisierte Darstellung der exemplarischen Dünensysteme von Hütelmoor (IDS), Norderney (BDS) in Deutschland und der Sefton-Küste (EDS) in Großbritannien, die durch unterschiedliche Exposition und Energieeintrag auszeichnen (Gezeitenbereich, Wellenhöhe). Numerische Modellexperimente mit XBeach-, Delft3D- und SWAN-Modellen werden mit unterschiedlichen Schematisierungen mit zunehmender Komplexität der Dünensysteme durchgeführt. Im ersten Jahr des Projekts wird zunächst eine morphodynamisch relevante Sturmdefinition für die numerischen Experimente erstellt und zur Festlegung der zuvor eingetretenen Sturmereignisse an den drei Dünensystemen eingesetzt. Dann werden Strandprofile modelliert und analysiert, um die Erosionsempfindlichkeit auf die topographischen Parameter wie Dünenneigung und Dünenbreite zu untersuchen. Im zweiten Jahr werden flächenhafte Simulationen durchgeführt, um die Auswirkung von Stürmen und den Einfluss der erwähnten morphologischen Elemente zu untersuchen. Im dritten Jahr wird ein Modell eines BDS für langperiodische (dekadische) Simulationen entwickelt. Dieses wird dann für die Auswirkungen von zwei Klimawandel-Szenarien (Meeresspiegelanstieg und Sturmhäufigkeit) auf die Erosion an den Dünen zu untersuchen. Die Forschungsergebnisse werden über Zeitschriftenartikel (Climatic Change) und Tagungsberichte veröffentlicht.Die Dauer des Projekts beträgt 3 Jahre und es soll am Zentrum für Marine Umweltwissenschaften (MARUM) der Universität Bremen durchgeführt werden. Die Forschung wird in enger Zusammenarbeit mit internen und externen Kollegen durchgeführt (MARUM: Bremen, NOC: Liverpool, UNESCO-IHE: Delft, IOW: Warnemünde und CRS: Norderney). Zusätzlich sollen jährliche Treffen mit Experten einberufen werden, um Erkenntnisse zu diskutieren und Feedback zu erhalten.
Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
The ISND78 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 01, 02, 04, 05, ... UTC) A2 (D): 90°E - 0° northern hemisphere (Remarks from Volume-C: NATIONAL AUTOMATIC SYNOP)
Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Waldbeständen, zu Baumarten, zu Folgereaktionen von Störungsereignissen wie z.B. Sturm, Kalamitäten, Da detaillierte Information häufig fehlen, sind die zahlreich verbreiteten Abschätzungen hierzu widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung seit mehreren Jahrzehnten bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten bzw. -gattungen und deren Zustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen u.a. belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Vor diesem Hintergrund soll mit dem aktuellen Forschungsvorhaben eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (Mecklenburg-Vorpommern) bietet dabei für FEMOPHYS einzigartige Möglichkeiten. Das Forschungsvorhaben verfolgt folgende Zielstellungen: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie z.B. Anfälligkeit für Insektenbefall und Dürre-Schäden ausgibt.
Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Wäldern und Baumarten sowie deren Reaktionen auf Störungsereignisse wie Sturm oder Kalamitäten. Da detaillierte Informationen häufig fehlen, sind die verbreiteten Abschätzungen hierzu teils widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten und deren Vitalitätszustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Mit dem aktuellen Forschungsvorhaben soll eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (MV) bietet dabei für FeMoPhys einzigartige Möglichkeiten. Das Vorhaben verfolgt folgende Ziele: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie Anfälligkeit für Insektenbefall und Dürreschäden ausgibt. Dieser und weitere Indizes können kombiniert werden und so helfen, Risiken für Kaskadeneffekte und die Überschreitung von Kipppunkten abzuschätzen.
Die Flutkatastrophe des Tief Bernd im Jahre 2021 verdeutlichte, dass bei einer bedarfsgerechten Auslegung der Verteilnetze die Einflüsse durch die globale Erwärmung nicht vernachlässigt werden dürfen und zwingend mitberücksichtigt werden müssen. Vor allem zu berücksichtigen ist dabei eine Anpassung der bisher bestehenden Richtlinien an die zukünftig zu erwartenden, zunehmenden Ausmaße von Extremwetterereignissen. Die Flutkatastrophe zeigte, dass die ausgewiesenen Hochwasser-Gebiete nicht länger ausreichen. Die Westnetz verfolgt im Rahmen des vorliegenden Teilvorhabens das Ziel, Handlungsempfehlungen für die Planung und den Betrieb ihrer Verteilnetze abzuleiten, um diese bestmöglich vor Extremwettereignissen wie insbesondere Starkregen, Sturm und Gewitter zu schützen. Des Weiteren soll die bestehende, auf eine kurzfristige Kostenoptimierung ausgelegte Bewirtschaftungsstrategie hin zu einer langfristig optimalen Strategie weiterentwickelt werden, durch die sowohl die Kosten der Klimafolgen als auch die mit dem Einsatz von Gegenmaßnahmen verbundenen Kosten berücksichtigt werden. Das Krisenmanagement der Westnetz gilt es ebenso an die zunehmende Häufigkeit und das zunehmende Ausmaß von Klimafolgen anzupassen und die Mitarbeitenden entsprechend zu schulen und sensibilisieren. Insgesamt wird durch das Vorhaben somit eine rechtzeitige und bedarfsgerechte Anpassung von Infrastrukturen und Organisationskonzepten der Energieversorgung an ihre zukünftigen Anforderungen gewährleistet.
Der Klimawandel und hier insbesondere langanhaltende Dürreperioden, Hitzewellen und starke Stürme erfordern neue Konzepte für den Waldbau. Das Gesamtziel dieses Projektes besteht daher in der Erarbeitung von waldbaulichen Empfehlungen für eine klimawandelangepasste Überführung verschiedener Ausgangsbestände zu Wäldern, die an die veränderten Umweltbedingungen angepasst sind. Damit sollen die Voraussetzungen geschaffen werden, um auch bei dem Übergang in die nächste Waldgeneration sowohl den aktuellen Bedürfnissen als auch den zukünftigen Herausforderungen an die Ökosystemleistungen und Klimastabilität der Wälder gerecht zu werden. Dieses Vorhaben fokussiert auf die Wechselwirkungen von Oberstand und Verjüngung in Bezug auf den Wasserhaushalt, berücksichtigt aber auch das Sturmwurfrisiko in Altbeständen. Kunstverjüngungen von Stieleiche, Buche, Douglasie und Weißtanne werden in experimentell heterogen aufgelichtete Buchen- und Kiefernbestände sowie Vorwälder eingebracht, in denen dann intensive Standortsanalysen durchgeführt werden. Die Auflockerung der bestehenden Bestockung soll zu einer Verbesserung des Wasserhaushaltes und damit zu günstigeren Anwuchs- und Wachstumsbedingungen für die Verjüngungspflanzen führen. Die Entwicklung der Verjüngungspflanzen wird in Abhängigkeit der Bodenwasserverfügbarkeit erfasst, zudem werden die sich im Auflichtungsbereich verändernden Strahlungs- und Bodeneigenschaften sowie die Artenzusammensetzung und Dichte der Vegetation berücksichtigt. Mittels eines Simulationstools werden darüber hinaus die Windströmungsverhältnisse berechnet. Anhand eines Optimierungsverfahrens werden diese Informationen schließlich genutzt, um die bestmögliche Wasserversorgung für Verjüngungspflanzen abzuleiten und dabei die Sturmgefährdung der Altbestände zu minimieren. Das Optimierungsverfahren liefert als Ergebnis Stammverteilungspläne für Musterbestände, die im Zuge der waldbaulichen Überführung als optimal angesehen werden können.
| Origin | Count |
|---|---|
| Bund | 806 |
| Europa | 111 |
| Kommune | 3 |
| Land | 380 |
| Wissenschaft | 216 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 176 |
| Ereignis | 22 |
| Förderprogramm | 388 |
| Repositorium | 1 |
| Taxon | 29 |
| Text | 220 |
| Umweltprüfung | 7 |
| unbekannt | 308 |
| License | Count |
|---|---|
| geschlossen | 280 |
| offen | 622 |
| unbekannt | 250 |
| Language | Count |
|---|---|
| Deutsch | 643 |
| Englisch | 602 |
| Leichte Sprache | 1 |
| Resource type | Count |
|---|---|
| Archiv | 13 |
| Bild | 24 |
| Datei | 198 |
| Dokument | 153 |
| Keine | 393 |
| Unbekannt | 7 |
| Webdienst | 1 |
| Webseite | 469 |
| Topic | Count |
|---|---|
| Boden | 874 |
| Lebewesen und Lebensräume | 980 |
| Luft | 1142 |
| Mensch und Umwelt | 1152 |
| Wasser | 809 |
| Weitere | 1048 |