API src

Found 44 results.

WMS Business Improvement Districts Hamburg

Web Map Service (WMS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

WFS Business Improvement Districts Hamburg

Web Feature Service (WFS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Business Improvement Districts Hamburg

Business Improvement Districts (BID), die in Hamburg Innovationsbereiche genannt werden, sind klar begrenzte Geschäftsgebiete (Business Districts), in denen auf Veranlassung der Betroffenen (z. B. Eigentümerschaft und Gewerbetreibenden) in einem festgelegten Zeitraum (maximal 8 Jahre) in Eigenorganisation Maßnahmen zur Quartiersaufwertung (Improvement) durchgeführt werden. Ein Ziel dabei ist es, durch die Schaffung eines Innovationsbereichs die Attraktivität eines Einzelhandels-, Dienstleistungs- und Gewerbezentrums für Kunden, Besucherinnen und Besucher zu erhöhen. Finanziert werden BIDs durch eine kommunale Abgabe, die alle im Gebiet ansässigen Grundeigentümerinnen und Grundeigentümer zu leisten haben. In diesem Datensatz werden alle laufenden BID in der Hamburger Innenstadt dargestellt.

Sub project: Quantitative Reconstruction of the Neogene East and West Antarctic Ice Sheet History from Drift Sediments (ODP Leg 178 and Leg 188): A Synthesis

Das Projekt "Sub project: Quantitative Reconstruction of the Neogene East and West Antarctic Ice Sheet History from Drift Sediments (ODP Leg 178 and Leg 188): A Synthesis" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. The proposed synthesis project aims to quantify the Antarctic ice sheet history of the last 10 Ma. With new statistical tools we will isolate and quantify the 'ice factor' in fine-fraction grain-size distribution data from Antarctic deep-sea drift deposits. In our preparatory work we showed that the sedimentary Antarctic drift bodies are continuous ice archives with a direct link in their built-up history at the continental rise to ice advances to the shelf break. Quantification of the ice volume is therefore possible, since the relative ice-cover to - volume ratio is known from models. In a four step approach we will complete the existing sample collection of Site 1095, increase its time resolution and analyse the recovered data sets with the end-member modeling method. Second step is the validation of the local data set to a regional scale by incorporating samples of a control Site (Site 1101) on a nearby drift. Thirdly we will prepare and analyse samples from a E-Antarctic drift (Site 1165) for a in-depth E-W ice sheet history comparision. During the synthesis phase of the project the new proximal data set will be correlated to a new global isotope -Ca/Mg based ice volume record contributed by our cooperation partners. These are three important reasons to start with the proposed research now: High social relevance of the expected data..., free access to the samples since the one year ODP moratorium for both ODP legs has passed, and the availability of abundant ancillary data from other working groups.

Establishment and exploration of a gas ion source for micro-scale radiocarbon dating of glaciers and groundwater

Das Projekt "Establishment and exploration of a gas ion source for micro-scale radiocarbon dating of glaciers and groundwater" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Recent progress in the operation of CO2 gas ion sources for accelerator mass spectrometer (AMS) 14C analysis on microgram-size samples opens a wide range of new applications in dating studies, e.g. for environmental and archeological applications. This proposal aims at implementing a gas ion source at the AMS system MICADAS at the Klaus-Tschira Laboratory of the Curt-Engelhorn-Zentrum für Archäometrie (CEZA) in Mannheim and to use this new capability for cutting-edge applications in environmental studies, namely the dating of small amounts of organic carbon contained in glacier ice and of specific organic compounds in ground water. Cold glaciers hold unique records on past climate and atmospheric composition. Mid-latitude ice cores furthermore enable reconstructions of recent ice chemistry changes, but cannot be dated by stratigraphic methods. For such ice bodies, only radiometric dating based on 14C analysis of organic matter contained in the ice matrix presently offers a reasonable dating potential in the late Holocene and beyond. The challenge of this approach lies in the very restricted availability of this matter, but the ability to analyse microgram samples of organic carbon from ice via a gas ion source should now enable reliable 14C dating of ice. Ground water constitutes an important water resource worldwide, especially in semi-arid regions, and in addition constitutes a useful climate archive. Dating of ground water by 14C in the dissolved inorganic carbon (DIC) is standard but problematic due to the complex carbonate geochemistry. Dating of ground water based on dissolved organic carbon (DOC) has been attempted with mixed success, but now the new analytical developments enable compound-specific 14C analyses of the various DOC components, offering the chance to identify compounds suitable for dating. This project is based on the extensive experience of the collaborating scientists in 14C analytics and applications as well as in the use of glacier ice and ground water as archives, including the development and application of 14C dating methods for these systems. It will establish 14C-measurements at the MICADAS AMS of the CEZA via a gas ion source on a routine base to analyse CO2-samples in the range of 5 to 40 microgram C at a precision down to 0,5 Prozent. By improving existing sample preparation techniques for glacier ice samples, reliable 14C values of the particulate and dissolved organic fractions from small (some 100 g) ice samples shall be obtained. This capability will be applied to constrain ages of cold, sedimentary glaciers as well as of small scale, cold Alpine congelation ice bodies. The project will further develop and test the tools required for micro-scale, compound-specific radiocarbon dating of ground water via its organic fraction. For this purpose, ground water samples from the Upper Rhine Graben area will be analysed, where extensive isotopic data, including DIC 14C values, are available for comparison.

Recrystallization regimes in an ice sheet - Towards a microstructure-based law of ice

Das Projekt "Recrystallization regimes in an ice sheet - Towards a microstructure-based law of ice" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen durchgeführt. A detailed understanding of the dynamics of polar ice sheets is essential for an accurate climate reconstruction and for the prediction of sea-level fluctuations. Today, the required simulations of ice movement are based on general, empirical material properties of ice. A more accurate description of these properties has to be extracted from the ice micro-structure over the entire ice sheet. This project will provide the necessary data-set for a quantitative parameterization of the entire grain boundary network based on microscopic image sequence analysis. Owning to the complexity and scope of the image data, specific and efficient methods of digital image processing (DIP) have to be developed and verified. Initially, the DIP methodology will be applied to the entire length of the East Antarctic EDML ice core, where the main emphasis will be the data reduction with regard to geometric parameters of grains and the evolution of grain boundaries. One goal is to document the extend to which the depth profiles of these micro-structural parameters are coupled with profiles of tracers and climate proxies in ice cores. The variability of subgrain boundaries with regard to the change of dislocation density represents a first indications of the depth dependence of ice viscosity and thus the rate of deformation. In this project, we will perform a semi-quantitative analysis of this aspect of micro-structural influence on ice dynamics.

Multi-proxy tree-ring analysis of conifer trees disturbed by insect outbreaks

Das Projekt "Multi-proxy tree-ring analysis of conifer trees disturbed by insect outbreaks" wird vom Umweltbundesamt gefördert und von University of British Columbia, Faculty of Forestry, Department of Forest Resources Management Vancouver durchgeführt. Insect outbreaks are a major disturbance influencing forest dynamics in many ecosystems and can affect forest productivity worldwide. Reconstruction of insect outbreak history is fundamental to forest management. While the action of cambium feeders on trees leads to the formation of scars, that of defoliators is observable via growth suppression in tree rings. The occurrence of past insect attacks can thus be inferred from such tree-ring signatures. However, it necessitates an accurate dating of events, with high temporal resolution, as well as their correct attribution to the right disturbance agent. Fire also leaves scars on trees that can occur on cross-sectional disks where insect scars are already present, thus making them difficult to distinguish. Furthermore, insect-elicited reductions in radial growth may not be clearly visible on samples, and the radial growth response to defoliation often bears a lag of one or more years. This project tackles these issues directly by proposing a multi-proxy approach aiming at improving tree-ring reconstructions of insect outbreaks. Tree rings will be investigated to study radial variations of tree-ring width, wood anatomy, wood density, and wood chemistry. While dendrochronologists have long relied on tree-ring width variations to track the signal induced by climate, geomorphic and ecological processes, they have scarcely exploited the potential of other proxies and rarely used them in combination. The most advanced studies that have embraced these possibilities are owed to dendroclimatologists. The core of this research therefore lies in the use of multiple wood traits to provide answers to the above mentioned dendroecological questions. Two conifer tree species from British Columbia and their respective pests are within the scope of this study: the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins), a cambium feeder, on lodgepole pine (Pinus contorta Douglas), and the western spruce budworm (WSBW, Choristoneura occidentalis Freeman), a defoliator, on Douglas-fir (Pseudotsuga menziesii Franco). It is hypothesized that insect outbreak disturbance in the form of bark beetle or defoliation events results in abrupt significant structural differences between the wood formed prior to and after the insect attack. Based on pioneering tree-ring research on insect outbreaks, there are great prospects that the variations of wood traits be proven useful for differentiating MPB scars from fire scars and for identifying WSBW defoliation events, possibly with higher temporal resolution. The study of multiple wood traits (proxies) will help gain an understanding of the influence of insect outbreak disturbance on wood formation and tree physiological processes, a prerequisite for improving the detection and dating of events in tree-ring series. (...)

Paläoklima Schwarzes Meer

Das Projekt "Paläoklima Schwarzes Meer" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Als weitestgehend abgeschlossenes Randmeer zeigt das Schwarze Meer eine deutliche Empfindlichkeit auf Umweltveränderungen und kann globale und regionale Klimaveränderungen in besonderem Maße verstärken. Trotz dieses hohen Potentials für Paläoklimarekonstruktionen wurden die Sedimente des Schwarzen Meeres bislang nur im geringen Maße zu paläoklimatischen Fragestellungen herangezogen. Die Einzigartigkeit des Schwarzen Meeres besteht darin, dass es während des Spätquartärs einen wiederholten Wechsel von Süßwasser- und marinen Phasen durchlebt hat, die eng mit der Entwicklung des globalen Meeresspiegels verknüpft sind und dem Rhythmus der Eis- und Warmzeiten folgen. Vor allem die geographische Lage des Schwarzen Meeres mit seinen teilweise laminierten Sedimenten ermöglicht es das Wechselspiel von mediterranem, mitteleuropäischem und stärker kontinentalem asiatischen Klimageschehen näher zu untersuchen.

Landscape and Lake-System Response to Late Quaternary Dynamics on the Tibetan Plateau - Northern Transect - Teilprojekt: Geographisches Institut (RWTH Aachen)

Das Projekt "Landscape and Lake-System Response to Late Quaternary Dynamics on the Tibetan Plateau - Northern Transect - Teilprojekt: Geographisches Institut (RWTH Aachen)" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Geographisches Institut, Lehrstuhl für Physische Geographie und Geoökologie durchgeführt. The project is part of the SPP1372 (Tibetan Plateau: Formation - Climate- Ecosystems. The objective of this proposed project bundle is the reconstruction of Quaternary climate and landscape evolution of the Northern Tibetan Plateau. The project aims to contribute multidisciplinary approaches on three selected lake catchment archives along sediment routings (sediment cascades) in order to better understand the interrelation between various land forming processes within well defined catchments. These processes are closely related to climatic conditions in the area. By reconstructing the processes we will be able to give detailed information about the climate development of the area. Important process parameters are related to the amount and temporal-spatial variations of precipitation which are directly linked to changes in the monsoonal air masses. Our research bundle focuses on the northern transect. The selected key-sites comprise the Donggi-Cona system, the Lake Ayakhum system and a nameless lake in the western Kunlun Mts. of quite different climate influence but with similar catchment characteristics (fully developed sediment cascades from the glaciers to the lakes). We will provide the first systematic chronostratigraphy of manifold aspects of environmental change on the north-eastern Tibetan Plateau, combining different types of terrestrial and lake records. Moreover, we will be able to synthesise land forming processes and their responses to climate forcing. Spatial GIS-based modelling of the landscape and climate evolution will help us to link local findings with regional and global signals.

Preconditions to GPS water vapour tomography with a resolution relevant for data assimilation in weather forecast models

Das Projekt "Preconditions to GPS water vapour tomography with a resolution relevant for data assimilation in weather forecast models" wird vom Umweltbundesamt gefördert und von Universität Leipzig, Institut für Meteorologie durchgeführt. Improved knowledge of water vapour fields are necessary for various meteorological and atmospheric research applications. Moisture distributions are used as input for atmospheric models and serve for precise numerical weather forecast. In the last decade, GPS-derived data products made many contributions to provide integrated water vapour (IWV). The knowledge of IWV characteristics is retrieved by analysing delays an the GPS signal caused by atmospheric gradients, using mapping functions and under the assumption of a known dry pressure field. The combination of several stations allow to produce two-dimensional maps of vertical IWV fields. Directly, it is possible to extract the water vapour content along single GPS rays, which state a integrated measurements. Considering a sufficient number of records in a defined area allows tomographic data assimilation. This would be a helpful tool to improve algorithms of moisture and precipitation forecast. A drawback of using only ground-based GPS receivers for water vapour reconstruction is the poor vertical resolution that can be achieved using links of small zenith angle only. In resent times, Low Earth Orbiter (LEO) satellites have been launched carrying an GPS receiver. Therefore, adding GPS-LEO links will significantly improve the vertical resolution, provided a large number of LEO satellite measurements are available. The spatial resolution that should be provided by such threedimensional fields are those used in local/regional weather forecast models. The aim of this study is to investigate the amount and constellation of GPS measurements - both groundbased and spacebased - necessary to perform tomographic reconstructions of water vapour content under the specifications requisite for use in numerical models.

1 2 3 4 5