Ausweisung von Flächen, auf denen die Möglichkeit für Entsiegelungen im Rahmen naturschutz- oder baurechtlicher Kompensationsmaßnamen besteht, mit genaueren Beschreibungen der einzelnen Flächen. Bearbeitungsstand Dezember 2024.
This study aims at assessing the feasibility of a Clean Development Mechanism (CDM) project to improve energy efficiency in Peruvian industrial boilers. As part of this study, current emissions from boilers in Peru are estimated, and the potential and mitigation costs for energy efficiency improvements as a CDM project are assessed, including a detailed analysis of different baseline options and an initial monitoring plan. A key element is also the development of the institutional set-up of the project, which includes bundling many small boilers into one CDM project.
The project GRAIL has been build with 15 partners from 9 different countries with the aim of finalising the solutions given previously to the valorization of glycerol and transform then in valuable products in a biorefinery approach. The overall concept of GRAIL project is the use, exploitation and further development of the state of the art in the field of bio-based products from glycerol and the development research-driven cluster for the use of crude glycerol for the production of high-value platforms, as well as valued end products, harnessing the biotech processes. Therefore GRAIL project has a strong business focus and its ultimate goal is to set up implantation of biorefineries in close relationship with biodiesel. This project's aim is to develop a set of technologies for converting waste glycerol from biodiesel production in a biorefinery concept to end with products of high value such as 1,3 propanediol, Fatty acid glycerol formal esters, PolyHydroxyAlkanoates (PHA), Hydrogen and Ethanol, Synthetic coatings, powder coating resins, Secondary Glycerol Amine, Biobutanol, Trehalose, Cyanocobalamin (Vitamin B12), ß-carotene, Docosahexaenoic acid (DHA), .The GRAIL project has designed an overall strategy based on three main pillars covering all the value chain: Pillar 1: Raw materials: Evaluation of crude glycerol and purification - Pillar 2: Product development: Research and development to transform crude glycerol into other high added value such as biofuels, green chemicals and food supplements - Pillar 3: Industrial feasibility aspects including economic and environmental evaluation. This pillar will take the results of GRAIL from the product development to the industrial site. To carry out that the technical feasibility will be study on a pilot plant in a Demonstration (and the results will be important to evaluate the LCA and the economic feasibility (WP6).
Climate engineering (CE) wird als mögliche ultimative Maßnahme zur Bekämpfung katastrophaler Klimaänderungen vorgeschlagen. Allerdings ergeben sich zahlreiche Bedenken bei einer möglichen Durchführung von CE oder selbst eines großräumigen Feldexperiments. Jedoch lässt sich CE nicht nur als Entweder-Oder-Entscheidung begreifen, vielmehr kann der Übergang zwischen einem Feldexperiment und dem eigentlichen Einsatz von CE fließend sein. Eine realistische Bewertung möglicher zukünftiger Anwendungen von CE muss daher ernsthaft die Möglichkeit räumlich begrenzten CEs in Betracht ziehen. Die Manipulation von Wolken bewirkt einen Strahlungsantrieb, der sich auf die Region, in der die Wolken geimpft werden, beschränkt. Dies ist eine notwendige, jedoch nicht hinreichende Bedingung für eine räumlich begrenzte Änderung von Klimaparametern wie der bodennahen Temperatur. Zunächst ist zu fragen, inwieweit Anreize für Staaten oder Clubs von Staaten bestehen, Möglichkeiten zum räumlich begrenzten CE einzusetzen. LEAC-II wird dazu abschätzen, wie sehr die ökonomischen Präferenzen bezüglich klimarelevanter Parameter räumlich korreliert sind. Abhängig von der Machbarkeit einer begrenzten Manipulation von Klimaparametern und der Präferenzen in verschiedenen Regionen ist zu fragen, welche Staaten oder Clubs von Staaten begrenztes CE unter Umständen einsetzen würden, und inwiefern dies Maßnahmen zur Vermeidung von Treibhausgasemissionen behinderte, wenn es keine global koordinierte Klimapolitik gibt. Regulierung setzt die Möglichkeit voraus, beabsichtigte Wirkungen klar den CE-Maßnahmen zuzuordnen, sowie für mögliche Schäden außerhalb der Zielregion die Maßnahme als Ursache zurückzuweisen. LEAC-II wird dies auf der Basis von Detection/ Attribution-Methoden untersuchen, wobei innovative Ansätze mit Ensemble-Klimavorhersagen auf kurzen Zeitskalen angewendet werden. LEAC-II schließlich mögliche Entwürfe für einen internationalen Regulationsmechanismus auf der Basis der ökonomischen Theorie diffuser Verschmutzung (non-point source pollution) untersuchen, die zu einer Pareto-Verbesserung im Vergleich mit unkoordinierten Verfahren führen würden. Konkret stellt LEAC-II die folgenden Fragen: 1. Machbarkeit: Inwieweit ist eine räumlich begrenzte Klimaänderung in Reaktion auf einen begrenzten Strahlungsantrieb erreichbar? 2. Anreize: Wie korrelieren räumlich die gesellschaftlichen ökonomischen Präferenzen zu Klimazuständen? 3. Ökonomische Auswirkungen: Was sind mögliche Auswirkungen von begrenztem CE auf den Wohlstand, wenn Länder begrenztes CE einsetzen und Treibhausgasemissionen nicht in koordinierter Weise reduzieren? 4. Nachweisbarkeit: Was ist nötig, um den räumlich begrenzten Effekt von begrenztem CE nachzuweisen, und um nachzuweisen, dass außerhalb der Zielregion das Klima nicht beeinträchtigt wird? 5. Regulierung: Wie lässt sich begrenztes CE unter der Maßgabe von Vorhersagbarkeit und Nachweisbarkeit effizient regulieren?
Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.
The amount of Municipal Solid Waste (MSW) in the EU28 reached 245 million tons in 2012. Nowadays, Europe directives for waste management are more restrictive each year (e.g Landfill Directive 1999/31/EC), but unfortunately, landfill disposal still represents 34% of total MSW generated. On the other hand, citizen awareness as well as the high fees operators pay for landfill disposal, have helped to greatly increase the percentage for recycling from 18% in 1995, to 42% in 2012. However, 40% of all the glass waste ends up in mixed MSW plants (which typically contain 7% of glass). Instead of being disposed of in selective-waste collection, it ends up in landfills or is composted/incinerated with the remnant waste. We have developed SEEGLASS, a high performance optical sorter based on computer vision and a pneumatic rejection system. Our aim is to solve this non-environmentally friendly problem, while also offering our end-users additional revenues with this recovered material, which is not being exploited now (49€/tn glass). In addition, extracting this glass, will allow the treatment plants to significantly reduce costs from waste disposal fees (50€/Tonne EU average and rising). Payback for customers is estimated in only 19 months. With this project we will (i) construct pre-conditioning process line, (ii) optimise our current SEEGLASS computer vision system as well as its mechanical and pneumatic design, to reach 80% glass recovery, with 99% purity, (iii) integrate both, the process line and the glass sorter solution into a demonstrator system, and (iv) validate its feasibility in-house with real MSW coming from different countries, as well as carry-out an 24/7 end-user validation. We, PICVISA, will be the first company to recover the glass fraction in refined MSW worldwide (the niche market exists worldwide) selling Turn-key installations or only SEEGLASS units, contributing to a disruptive change in the sector.
The overall objective of this project is to provide an overview of the nature and extent of injury from chemicals and chemical products in the European region and detail information on the circumstances of how these exposures occur. The outcomes of this research will improve understanding of accidental poisoning and exposure to chemicals in household consumer products. The aim is to identify what data are available to characterise the nature and extent of injury from chemicals in household consumer chemicals and chemical products within Europe, and to find out what conclusions can be drawn from these data sources. It also aims to explore the feasibility of extracting information from poison centres databases for the same purpose, both retrospectively and prospectively. It is envisaged that the project findings will be used to evaluate and improve risk assessment and risk management measures to reduce the incidence and severity of poisoning exposures. To address the specific objectives of the project the work has been divided into five subcomponents as outlined below. 1. Undertake a literature review of published statistical data on the nature and frequency of incidents and events related to accidental exposures to household chemical products to provide an overview of what information is currently available1. 2. Review the data collected by two poisons centres on the circumstances of exposure to consumer chemical products by undertaking a retrospective analysis of enquiries made to two key European poisons centres over a three year period. 3. Evaluate the information collected through the retrospective study to determine how useful these data are for risk assessment purposes and to what extent such data can be collected on a European-wide basis. 4. Undertake a review of risk management measures currently used to reduce risk of poisoning from chemical consumer products. This will include an assessment of the alerting mechanisms used by poisons centres and lessons learned from toxicovigilance activities (e.g. monitoring toxicity of commercial products or identifying products causing significant morbidity or mortality). 5. Design and execute a prospective feasibility study to investigate in more detail the circumstances of exposure to a defined set of consumer chemical poisoning incidents. The design of the study will take into account the results and recommendations of the other subcomponents. The study will involve four poisons centres (Lille, London, Göttingen and Prague) and will be conducted over a six month period. Selected cases reported during this time will be analysed to assess the effectiveness of controls and barriers. This will include information on the circumstances of exposure and severity of poisoning and an assessment of possible preventative measures.
SULAMA is a participatory research project to support sustainable land management on the Mahafaly Plateau in south-western Madagascar. The focus of the first project-phase is set on the investigation of the present land-management to deduce the interdependencies and interactions between the local population and the ecosystematic conditions. Results of the first phase are used for stakeholder-based solutions to replace non-sustainable practices under the scenario of a growing human population, climate change, and prospective land transformation programs. In this project the Institute for World Forestry analyses the composition of the forest, the utilization of timber and non-wood goods and services (NWGS), and carbon stock changes in order to quantify the impact on the forest to provide ecosystem services and functions. In addition the potential of natural regeneration or enrichment planting in degraded or formerly forested sites will be assessed. For this purpose forest ecosystem indicator species are identified and changes in biomass over time are monitored. Thus, options for sustainable timber production and use of NWGS, carbon sequestration taking into account possible benefits from marketable CO2 certificates and the feasibility of enrichment plantings are derived. Together with local stakeholders tree nursieries will be developed and implemented. This is supported by the analyses of the forest and land-use development over time for different future climate change scenarios, facilitating the calculation of opportunity costs for the usage of wood and NWGS and the demonstration of alternative options for sustainable land-use management.
Objective: The growing development, production and use of engineered nano-materials and associated products will increase exposure of both humans and ecosystems to these new materials. However, current knowledge is still incomplete and established test methods are as yet inappropriate to reliably assess the extent of exposure and risk of materials at the nano-scale. There is an urgent need to develop methods to overcome the current limitations of existing hazard and risk assessment schemes and to generate the body of reference data needed as the basis for regulative requirements and for measures to safeguard production, application and the disposal of nano-materials. The proposed project will mobilize the critical mass of international scientific knowledge and technical expertise required to address these questions. Current analytical and toxicity test methods and models will be put to test and subjected to rigorous intercalibration and validation. Where necessary, methods and test materials will be modified, adapted and validated, and new reliable reference methods developed, in cooperation with international standardisation bodies and the concerned industry, to support both pre and co-normative activities and to make the applicability of existing RA and LCA schemes to ENPs more reliable. The feasibility of validated measurement, characterization and test methods will be assessed by selected case studies to help the significant improvement of the performance of existing exposure monitoring systems as well as the development of new risk management and reduction strategies.