API src

Found 53 results.

FH-Kooperativ 2-2023: Dauerhafte Verstärkung bestehender Betonstrukturen mit Aufbetonschichten aus UHFSB (StrongShot)

Wirtschaftliche Fertigungs- und Systemkonzepte für die nachhaltige Wärmeversorgung von Gebäuden mit durchströmbaren Bauelementen aus Ultrahochleistungsbeton (UHPC)

DeepCsolution - Druckgehäuse aus ultrahochfestem Beton für die Meerestechnik, Vorhaben: Entwicklung einer Fertigungsmethode für hochpräzise, dünnwandige UHPC-Druckgehäuse mit metallfreiem Dichtungssystem

DeepCsolution - Druckgehäuse aus ultrahochfestem Beton für die Meerestechnik, Vorhaben: Konstruktive Durchbildung und Bemessung hochpräziser, dünnwandiger UHPC-Druckgehäuse mit metallfreiem Dichtungssystem

DeepCsolution - Druckgehäuse aus ultrahochfestem Beton für die Meerestechnik, Vorhaben: Untersuchung von UHPC und UHPC-Druckgehäusen unter stoßartiger Belastung, Langzeitbelastung und mehraxialer Beanspruchung

DeepCsolution - Druckgehäuse aus ultrahochfestem Beton für die Meerestechnik, Vorhaben: Trägerstruktur aus Carbonbeton für maritime Druckgehäuse

DeepCsolution - Druckgehäuse aus ultrahochfestem Beton für die Meerestechnik, Vorhaben: Entwicklung, Herstellung und Prüfung einer universellen Energieversorgungseinheit für UHPC-Druckgehäuse

BeHeWaDS - Angepasster Ultra-Hochleistungsbeton für Heißwasser-Druckspeicher, Teilvorhaben: Betonoptimierung mit Flugasche und Speicherintegration in den Kraftwerkspark

Die Speicherung von elektrischem Strom ist wünschenswert, dürfte sich aufgrund einer ressourcenintensiven Umsetzung für das nächste Jahrzehnt in einem größeren Umfang jedoch noch schwierig gestalten. Die Speicherung von Wärmeenergie gilt hingegen als ein vielversprechender Ansatz. Wasser als Wärmespeicher ist zwar von den verwendbaren Materialien und der Umsetzung her eine relativ einfach umsetzbare Technologie, für saisonale Wärmespeicher ist die Energiedichte jedoch zu begrenzt. Um größere Energiemengen zu speichern, sind entsprechend große Wassermengen notwendig. Dazu müssen Wassertanks konstruiert werden, die zum einen große Mengen Wasser aufnehmen können, zum anderen über einen weiten Druck-Temperaturbereich stabil sind und einer dauerhaften zyklischen Beanspruchung standhalten. Gleichzeitig soll deren Herstellung preiswert und unkompliziert sein. Beton wurde bereits als preiswerter Baustoff solcher Tanks eingesetzt, jedoch konnten dabei lediglich Temperaturen des Wassers bis 95 °C realisiert werden, was die Menge an speicherbarer Energie stark limitiert. Das Vorhaben soll nun grundlegend die Auswirkungen der zyklischen Temperatur-Druck-Belastung auf Ultra-Hochleistungsbeton (UHPC) klären. Hierfür soll untersucht werden, wie die unterschiedlichen Mineralphasen auf die äußeren Bedingungen reagieren, und wie ggf. Modifikationen am Stoffsystem durchgeführt werden können, um die thermische Belastbarkeit des UHPC zu erhöhen. Die Machbarkeit soll anschließend an kleinen Testkörpern (ca. 10L Inhalt) geprüft werden, abschließend wird noch ein größerer Testtank (ca. 100 L Inhalt) erstellt. Um eine entsprechende Effizienzsteigerung beim Energiespeichervermögen zu erreichen sollen Temperaturen bis 200 °C bei einem Druck von 15 bar verwirklicht werden. Der Nachweis, dass der UHPC der zyklischen Belastung dauerhaft stand hält soll die Machbarkeit zur Entwicklung von Energiespeichertanks aus UHPC darlegen.

BeHeWaDS - Angepasster Ultra-Hochleistungsbeton für Heißwasser-Druckspeicher, Teilvorhaben: Bestimmung der physikalischen und phasenchemischen Eigenschaften von zyklisch Druck-Temperaturbelasteten Ultra-Hochleistungsbeton

Die Speicherung von elektrischem Strom ist wünschenswert, dürfte sich aufgrund einer ressourcenintensiven Umsetzung für das nächste Jahrzehnt in einem größeren Umfang jedoch noch schwierig gestalten. Die Speicherung von Wärmeenergie gilt hingegen als ein vielversprechender Ansatz. Wasser als Wärmespeicher ist zwar von den verwendbaren Materialien und der Umsetzung her eine relativ einfach umsetzbare Technologie, für saisonale Wärmespeicher ist die Energiedichte jedoch zu begrenzt. Um größere Energiemengen zu speichern, sind entsprechend große Wassermengen notwendig. Dazu müssen Wassertanks konstruiert werden, die zum einen große Mengen Wasser aufnehmen können, zum anderen über einen weiten Druck-Temperaturbereich stabil sind und einer dauerhaften zyklischen Beanspruchung standhalten. Gleichzeitig soll deren Herstellung preiswert und unkompliziert sein. Beton wurde bereits als preiswerter Baustoff solcher Tanks eingesetzt, jedoch konnten dabei lediglich Temperaturen des Wassers bis 95 °C realisiert werden, was die Menge an speicherbarer Energie stark limitiert. Das Vorhaben soll nun grundlegend die Auswirkungen der zyklischen Temperatur-Druck-Belastung auf Ultra-Hochleistungsbeton (UHPC) klären. Hierfür soll untersucht werden, wie die unterschiedlichen Mineralphasen auf die äußeren Bedingungen reagieren, und wie ggf. Modifikationen am Stoffsystem durchgeführt werden können, um die thermische Belastbarkeit des UHPC zu erhöhen. Die Machbarkeit soll anschließend an kleinen Testkörpern (ca. 10L Inhalt) geprüft werden, abschließend wird noch ein größerer Testtank (ca. 100 L Inhalt) erstellt. Um eine entsprechende Effizienzsteigerung beim Energiespeichervermögen zu erreichen sollen Temperaturen bis 200 °C bei einem Druck von 15 bar verwirklicht werden. Der Nachweis, dass der UHPC der zyklischen Belastung dauerhaft stand hält soll die Machbarkeit zur Entwicklung von Energiespeichertanks aus UHPC darlegen.

BeHeWaDS - Angepasster Ultra-Hochleistungsbeton für Heißwasser-Druckspeicher, Teilvorhaben: Optimierung der Bindemittelzusammensetzung eines Ultra-Hochleistungsbetons (UHPC) für zyklisch Druck-Temperaturbelastete Heißwasser Druckspeicher

Die Speicherung von elektrischem Strom ist wünschenswert, dürfte sich aufgrund einer ressourcenintensiven Umsetzung für das nächste Jahrzehnt in einem größeren Umfang jedoch noch schwierig gestalten. Die Speicherung von Wärmeenergie gilt hingegen als ein vielversprechender Ansatz. Wasser als Wärmespeicher ist zwar von den verwendbaren Materialien und der Umsetzung her eine relativ einfach umsetzbare Technologie, für saisonale Wärmespeicher ist die Energiedichte jedoch zu begrenzt. Um größere Energiemengen zu speichern, sind entsprechend große Wassermengen notwendig. Dazu müssen Wassertanks konstruiert werden, die zum einen große Mengen Wasser aufnehmen können, zum anderen über einen weiten Druck-Temperaturbereich stabil sind und einer dauerhaften zyklischen Beanspruchung standhalten. Gleichzeitig soll deren Herstellung preiswert und unkompliziert sein. Beton wurde bereits als preiswerter Baustoff solcher Tanks eingesetzt, jedoch konnten dabei lediglich Temperaturen des Wassers bis 95 °C realisiert werden, was die Menge an speicherbarer Energie stark limitiert. Das Vorhaben soll nun grundlegend die Auswirkungen der zyklischen Temperatur-Druck-Belastung auf Ultra-Hochleistungsbeton (UHPC) klären. Hierfür soll untersucht werden, wie die unterschiedlichen Mineralphasen auf die äußeren Bedingungen reagieren, und wie ggf. Modifikationen am Stoffsystem durchgeführt werden können, um die thermische Belastbarkeit des UHPC zu erhöhen. Die Machbarkeit soll anschließend an kleinen Testkörpern (ca. 10L Inhalt) geprüft werden, abschließend wird noch ein größerer Testtank (ca. 100 L Inhalt) erstellt. Um eine entsprechende Effizienzsteigerung beim Energiespeichervermögen zu erreichen sollen Temperaturen bis 200 °C bei einem Druck von 15 bar verwirklicht werden. Der Nachweis, dass der UHPC der zyklischen Belastung dauerhaft stand hält soll die Machbarkeit zur Entwicklung von Energiespeichertanks aus UHPC darlegen.

1 2 3 4 5 6