API src

Found 266 results.

Related terms

Minimierter Wasserbedarf in der NE-Metallindustrie durch Einsatz der Umkehrosmose

Die "Berzelius" Stolberg GmbH in Stolberg/Nordrhein-Westfalen ist ein Primärbleierzeuger. Es werden jährlich ca. 150.000 Tonnen Blei in Form von Fein- und Weichblei sowie Bleilegierungen hergestellt. Das Unternehmen wendet schon seit Jahren eine moderne Technologie zur Verarbeitung von Bleikonzentraten und sekundären Rohstoffen an. Dadurch konnten die Produktionsprozesse hinsichtlich der Luftreinhaltung und Energieeinsparung optimiert werden. Es fallen jedoch immer noch vergleichsweise große Abwassermengen mit hohen Schwermetallgehalten an, die durch das geplante Projekt deutlich gemindert werden sollen. Im Rahmen des Vorhabens soll erstmalig die Membrantechnologie mit Umkehrosmose zur Abwasserbehandlung eingesetzt werden. Die Technologie wird zwar bereits für verschiedene andere Industrieabwässer angewandt, nicht jedoch im Bereich der Erzeugung von Nichteisenmetallen. Voraussetzung für die gezielte Behandlung der unterschiedlich zusammengesetzten Abwässer ist eine konsequente Entflechtung der einzelnen Abwasserströme. Dazu werden neue Pumpstationen und Rohrleitungen installiert. Die Umkehrosmose wird mehrstufig ausgelegt, da nicht alle Brauchwasser die gleichen Qualitätsansprüche aufweisen. Das Kühlwasser wird lediglich einmal gereinigt, während das Wasser für die Dampferzeugung und für den Einsatz in der Produktion in einer weiteren Membraneinheit und anschließend in einer Ionenaustauscheranlage weiter gereinigt wird. Die Umweltschutzwirkungen liegen hauptsächlich in der Reduzierung des Abwassers auf etwa ein Drittel der bisherigen Menge und der damit verbundenen Senkung der Schwermetallfracht von Cadmium, Arsen, Blei und Zink. Gleichzeitig sollen zwei Drittel des Abwassers nach der Behandlung innerbetrieblich weiter verwertet werden. Der Wasserbedarf soll insgesamt erheblich verringert werden. Das in der Umkehrosmose anfallende stark mit Schwermetallen angereicherte Konzentrat wird in die neu geplante Abwasserbehandlungsanlage eingespeist. Dabei werden Arsen und Thallium gefällt und entsorgt. Der übrige stark bleihaltige Gipsschlamm wird den Vorstoffen zugeführt und stofflich weitgehend verwertet. Branche: Metallverarbeitung Umweltbereich: Wasser / Abwasser Fördernehmer: "Berzelius" Stolberg GmbH Bundesland: Nordrhein-Westfalen Laufzeit: 2006 - 2007 Status: Abgeschlossen

Installation und Betrieb einer weitergehenden Abwasserreinigung mittels Membranbioreaktor (MBR) und Umkehrosmose (UO) und Rückführung des gereinigten Abwassers in die Produktion

Die Albert Köhler GmbH & Co. KG ist ein mittelständisches Unternehmen, das Pappen zu 96 Prozent aus Altpapier herstellt. Ziel des Vorhabens ist es, durch eine für die Papierbranche neuartige Anlage sein Abwasser so aufzubereiten, dass es in den Produktionskreislauf zurückgeführt werden kann. Zugleich soll die im Abwasser gespeicherte Wärme zur Deckung des Energiebedarfs im Unternehmen beitragen. Insgesamt werden rund 2.000 Tonnen klimaschädliches Kohlendioxid pro Jahr eingespart. Das Vorhaben wird im Rahmen der Klimaschutzinitiative des Bundesumweltministeriums gefördert. Das Unternehmen plant, das vorgereinigte Abwasser zukünftig in zwei weiteren Stufen, einem Membranbioreaktor und einer nachgeschalteten Teilstrombehandlung mittels Umkehrosmose, zu reinigen. Der Membranbioreaktor ist eine Kombination von konventionellem Belebungsverfahren und Ultrafiltration. Bis zu 94 Prozent des Abwassers können dem Produktionskreislauf wieder zugeführt werden. Dementsprechend sinkt der Frischwasserbedarf. Zugleich wird die Schadstofffracht verringert und ein Beitrag zum Gewässerschutz geleistet. Durch den Wiedereinsatz des warmen Abwassers in der Produktion verringert sich der Bedarf an Primärenergie. Zu dieser Verringerung trägt auch das Vorwärmen des zugesetzten Frischwassers bei. Die dafür erforderliche Energie wird mit Hilfe von Wärmetauschern aus dem Abwasser gewonnen. Branche: Papier und Pappe Umweltbereich: Wasser / Abwasser Fördernehmer: Albert Köhler GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: 2008 - 2010 Status: Abgeschlossen

Ressourcenschonender SB-Waschpark

Die Firma FAWA Fahrzeugwaschanlagen GmbH ist seit über 30 Jahren in der Fahrzeugreinigungsbranche tätig. Aktuell betreibt das Unternehmen zwei maschinelle Fahrzeugwaschanlagen im Stadtgebiet der Universitätsstadt Gießen. Beim Betrieb von Autowaschanlagen werden dem Waschwasser verschiedene Stoffe zugefügt, beispielsweise Tenside, Säuren oder Laugen zur Erhöhung der Reinigungsleistung. Außerdem gelangen bedingt durch den Reinigungsprozess selbst organische und anorganische Substanzen in den Wasserkreislauf. In Deutschland wird die Behandlung von Abwässern aus Autowaschanlagen im Rahmen der Abwasserverordnung geregelt. Zudem wird darin zwar auch festgelegt, dass Waschwasser weitestgehend im Kreislauf zu führen ist, allerdings greift diese Regelung nicht für SB-Waschplätze, da es sich hierbei nicht um eine maschinelle, sondern um eine manuelle Fahrzeugreinigung handelt. Standard-SB-Waschplätze haben allgemein folgenden Aufbau: Die Bodenabläufe der SB-Waschplätze enthalten selbst separate Schlamm- und Sandfänge, oder werden über Rohrleitungen in einen zentralen Schlammfang geführt. Danach ist ein Leichtflüssigkeitsabscheider installiert. Das verbrauchte Waschwasser wird dann in die Kanalisation eingeleitet, da die Qualität des Abwassers für eine Kreislaufführung nicht ausreicht. Im Rahmen dieses UIP-Projekts ist ein Kfz-Waschpark mit SB-Waschplätzen geplant, der mit Regenwassernutzung und einer membranbasierten Wasseraufbereitung ausgestattet ist und so fast komplett ohne Frischwasser auskommt. Darüber hinaus wird ein neutraler CO 2 -Betrieb mit Energieversorgung durch PV-Anlage und Energiespeicher sowie eine innovative Wärmerückgewinnung aus dem Betrieb von speziellen SB-Staubsaugern angestrebt. Durch die Realisierung des Vorhabens werden regenerative Energien effizient genutzt, Regenwasser verwendet und der Einsatz von Chemikalien minimiert. Durch Kreisläufe wird Grauwasser wieder zu Nutzwasser. Anfallende Wärme wird in den energetischen Kreislauf eingebunden und minimiert damit den energetischen Aufwand. Die Nutzung von Regenwasser reduziert im Projekt die projizierte notwendige Menge von Frischwasser auf null, wenn Niederschläge, wie in den vergangenen Jahren fallen. Wenn kein Regenwasser zur Verfügung steht, kann die nötige Qualität auch mittels Umkehrosmose erzeugt werden. Das Wasser, welches normalerweise aufgrund seiner hohen Salzfracht ins Stadtnetz eingeleitet werden würde, kann hier einfach zurück in den Entnahmebehälter geleitet werden. Dort vermischt es sich im Betrieb wieder mit dem Osmosewasser und kann so ohne Weiteres erneut aufbereitet werden. Der Bedarf an Osmosewasser beträgt etwa 20 Prozent des Gesamtbedarfs. Die Bereitstellung des Wassers durch die Aufbereitungsanlage folgt einfachen Regeln, welche in der Steuerung über die Zeit in Abhängigkeit vom Nutzungsverhalten, Wetterdaten und damit u.a. dem PV-Strom Aufkommen optimiert werden. Im weiteren Betrieb optimiert sich die Anlage bezüglich genauerer Vorhersagen, was die täglichen Bedarfsmengen betrifft. Gegenüber einer herkömmlichen Anlage werden voraussichtlich mindestens 1.050 Kubikmeter, gegenüber einer effizienten Anlage immer noch ca. 350 Kubikmeter Frischwasser eingespart. Regenwasser hat eine geringere Härte, dadurch und durch eine Erhöhung der Prozesswassertemperatur um ca. 5 Grad Celsius kann eine Reduzierung von bis zu 35 Prozent der schaumbildenden Chemie erreicht werden. Es können ca. 440 Liter Chemikalien eingespart werden. Trotz der 100-prozentigen Einsparung von Frischwasser kann die innovative Anlage mit dem gleichen Energiebedarf wie eine herkömmliche Anlage betrieben werden. Der Gesamtenergiebedarf reduziert sich bei der Projektanlage um ca. 6.800 Kilowattstunden auf 11.503 Kilowattstunden pro Jahr, was einer Reduktion von etwa 40 Prozent gegenüber einer effizienten Anlage entspricht. Besonders an der Anlage ist vor allem die sehr gute Übertragbarkeit der einzelnen Technologien in der Branche. Die Komponenten können fast alle, teilweise in abgewandelter Form, einfach in bereits bestehende SB-Waschanlagen, Portalanlagen und Waschstraßen integriert und nachgerüstet werden. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Ressourcen Fördernehmer: FAWA Fahrzeugwaschanlagen GmbH Bundesland: Hessen Laufzeit: seit 2023 Status: Laufend

Prozesswassernachbehandlungsanlage zur Produktion von löslichem Kaffee

Die DEK Deutsche Extrakt Kaffee GmbH (DEK) stellt seit der Firmengründung 1969 lösliche Kaffees in Berlin her, die überwiegend für das Marktsegment der Handelsmarken produziert werden. Dazu gehören koffeinhaltige und entkoffeinierte, sprühgetrocknete und agglomerierte Kaffees sowie Flüssigkaffees zur Fremdtrocknung und Weiterverarbeitung für die Industrie und den Handel. Die DEK ist ein Lebensmittelbetrieb mit sehr hohen Hygieneanforderungen. Neben dem Wasser für die Extraktion des Kaffees bedingt die Reinigung der Produktionsanlagen einen großen Anteil des Gesamtwasserbedarfes. Nicht mehr verwendbare Prozesswässer, die hauptsächlich Kaffee enthalten, wurden weitgehend unbehandelt über die öffentliche Kanalisation abgeleitet. Die DEK leitet ca. 1.200 Kubikmeter pro Tag in das kommunale Abwassernetz der Berliner Wasserbetriebe (BWB) ein. Die Spezifikation der indirekt eingeleiteten Prozesswässer sind in den Allgemeinen Bedingungen für Entwässerung (ABE) der BWB geregelt. Für im Wasser enthaltene sauerstoffzehrende Stoffe gab es in Berlin hinsichtlich des Parameters chemischer Sauerstoffbedarf (CSB) keine Grenzwerte. Vor Projektbeginn lag der CSB-Wert der Abwässer bei ca. 10.000 bis 14.000 Milligramm pro Liter. Mit Änderung der Allgemeinen Bedingungen für die Entwässerung (ABE) im Juli 2013 wurden erstmals die Grenzwerte für den CSB auf 2.000 Milligramm pro Liter bzw. 500 Milligramm pro Liter (schwer abbaubar) festgelegt. Ziel des Vorhabens war die Reduzierung des CSB-Werts des Prozessabwassers entsprechend der ABE, so dass eine Einleitung in das öffentliche Abwassernetz weiterhin erfolgen kann. Dazu wurde eine Prozesswassernachbehandlungsanlage (PWNA) errichtet. Das Kernverfahren beinhaltet eine vorgeschaltete Feststoffabtrennung, einen Bioreaktor mit einer auf das Kaffeeabwasser spezialisierten Mikrobiologie sowie eine neuartige getauchte Membranfiltrationseinheit. Die Prozesswässer durchlaufen zuerst einen Schrägklärer zur Abtrennung ungelöster, sedimentierbarer Feststoffe. Danach verweilen die Prozesswässer ca. 24 Stunden in Puffertanks. Durch die abwechselnde Einleitung von sauren und alkalischen Reinigungswässern erfolgt eine effektive Neutralisierung der Prozesswässer. Reicht die Eigenneutralisation in den Puffertanks nicht aus, kann in einer Feinneutralisation der pH-Wert des Anlagenzulaufs eingestellt werden. Durch einen zweiten Schrägklärer gelangen die Prozesswässer in die Belebungsbehälter. Hier findet im Belebtschlammverfahren der zentrale Abbauprozess durch Mikroorganismen statt. Zuletzt durchlaufen die Prozesswässer eine Membranfiltration, in der Klärschlamm und gereinigtes Abwasser voneinander getrennt werden. Durch die innovative Verfahrenskette der PWNA wird im Vergleich zu einem konventionellen Verfahren wie der Umkehrosmose eine Einsparung von thermischer und Elektroenergie erzielt. Daraus resultiert insgesamt eine um 10.500 Tonnen geringere CO 2 -Emission pro Jahr. Zusätzlich wird durch die dezentrale Reinigung beim Erzeuger die kommunale Kläranlage entlastet und somit die Gewässerbelastung verringert. Eine Übertragung der Technologie auf die Prozesswasserbehandlung vergleichbarer Branchen mit hohem CSB bzw. organischer Fracht ist möglich. Hier sind vor allem Gewerbe mit Extraktionsprozessen zu nennen. Durch modularen Aufbau können auch mehrstufige und/oder mehrstraßige Behandlungen dargestellt werden. Branche: Nahrungs- und Futtermittel, Getränke, Landwirtschaft Umweltbereich: Wasser / Abwasser Fördernehmer: DEK Deutsche Extrakt Kaffee GmbH Bundesland: Berlin Laufzeit: 2016 - 2018 Status: Abgeschlossen

Umweltgerechte Behandlung von nitrathaltigen Abwässern

Süd-Chemie AG produziert am Standort Bruckmühl Katalysatoren für die chemische und petrochemische Industrie. Bei der Katalysatoren Produktion fallen Abwässer mit einem hohen Salzgehalt an. Ziel des Vorhabens ist die umweltgerechte Behandlung dieser nitrathaltigen Abwässer und die Rückgewinnung von Natriumnitrat. Das Nitrat soll weitgehend ohne den zusätzlichen Einsatz von Chemikalien und ohne Anfall von Klärschlamm bei vertretbarem Energieeinsatz zurückgewonnen werden. Für die Behandlung dieser Abwässer hat die Süd-Chemie AG eine neuartige Verfahrenskombination bestehend aus Filtration, Ionenaustausch, Umkehrosmose und Eindampfer und Kristallisator entwickelt. Die Abwässer mit sehr unterschiedlichen Nitratgehalten werden zusammengefasst und zur Abtrennung der Feststoffpartikel filtriert. Nach dem Entfernen der in geringen Mengen im Filtrat vorliegenden Schwermetalle über Ionentauscher, werden die nitrathaltigen Filtrate durch kaskadenartig geschaltete Umkehrosmosestufen aufkonzentriert. Diese so erhaltene hochkonzentrierte Natriumnitratlösung wird dann eingedampft; nach einer abschließenden Kristallisation fällt hochreines Natriumnitrat an. Bei dieser innovativen Verfahrenskombination werden ca. 2.300 Tonnen Natriumnitrat pro Jahr gewonnen, eine Belastung der Gewässer durch organische Sauerstoffakzeptoren und Neutralisationschemikalien wird vermieden. Außerdem fällt kein Klärschlamm an. Das Vorhaben setzt neue Maßstäbe bei der Abwasserbehandlung und Wertstoffrückgewinnung. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Wasser / Abwasser Fördernehmer: Süd-Chemie AG Bundesland: Bayern Laufzeit: 2003 - 2008 Status: Abgeschlossen

Installation einer Anlage zur Gewinnung von Prozesswasser aus Abwasser

Die Nordland Papier GmbH ist ein Tochterunternehmen der finnischen UPM-Kymmene Corporation. Die im Jahr 1967 gegründete Feinpapierfabrik produziert derzeit auf vier Papier- und zwei Streichmaschinen ungestrichene und gestrichene Schreib- und Druckpapiere. Die Papierfabrik am Standort Dörpen im Emsland ist die größte ihrer Art in Europa. Am Standort sind ca. 1.700 Mitarbeiter beschäftigt. Das Werk hat eine Jahreskapazität von 1,3 Mio. Tonnen. Das für die Produktion benötigte Frischwasser wird unter Berücksichtigung einer nachhaltigen Regeneration des Grundwassers aus acht Tiefbrunnen entnommen. Das bei der Papierproduktion anfallende Abwasser wird in der Abwasserreinigungsanlage mechanisch und biologisch gereinigt, bevor es in die Ems eingeleitet wird. Der Strombedarf der Fabrik wird zu 100 Prozent durch Fremdbezug gedeckt. Der für die Papiertrocknung benötigte Dampf wird auf fünf gasbetriebenen Kesseln und einem elektrisch betriebenen Kessel erzeugt. Die Nordland Papier GmbH hat seit Beginn der Produktion im Jahr 1969 durch Schließen von Wasserkreisläufen und den sparsamen Einsatz von Frischwasser den Wassereinsatz kontinuierlich gesenkt und ist mit einem Frischwasserbedarf von weniger als vier Litern pro Kilogramm Papier Benchmark im Feinpapierbereich. Die Möglichkeiten, den Frischwasserbedarf weiter zu verbessern, sind nahezu ausgeschöpft. Hinzu kommt, dass es durch weitere Kreislaufschließungen zu einem Anstieg der Leitfähigkeit und der mikrobiellen Belastung im Prozesswasser kommt. Mit dem erstmalig in der Feinpapierproduktion praktizierten Ansatz, Abwasser mit Hilfe von Ultrafiltration und Umkehrosmose so aufzubereiten, dass es als Frischwasserersatz wiederverwertet werden kann, hat die Nordland Papier GmbH ein wegweisendes Demonstrationsprojekt zur Reduzierung der Umweltbelastung der Papierherstellung realisiert. Dazu wurde im Frühjahr 2018 auf dem Werksgelände ein neues Gebäude für die Prozesswasserrückgewinnung errichtet. Mittels Schachtpumpen wird nach der Abwasser-reinigungs-Anlage (ARA) aus dem Zulauf zur Ems eine Teilmenge von ca. 150 Kubikmeter pro Stunde des mechanisch biologisch gereinigtem Prozesswassers der neuen Prozess-Wasser-Aufbereitungsanlage (PWA) zugeführt. Durch Ultrafiltration (1. Stufe) und Umkehrosmose (2. Stufe) werden die im mechanisch biologisch gereinigtem Prozesswasser noch vorhandenen Feststoffe, die gelösten Salze und Bakterien / Keime abgetrennt. Das aus der Umkehrosmose gewonnene Permeat erfüllt die hohen Anforderungen an das Frischwasser, die für die Produktion von hochweißem Feinpapier erforderlich sind. Das erzeugte Permeat wird zu 100 Prozent ins Frischwasser dosiert. Die abfiltrierten Stoffe aus der Ultrafiltration werden in den Rücklaufschlamm zur Biologie gegeben. Das Konzentrat aus der Umkehrosmose wird mit dem verbliebenen Abwasser der Abwasserreinigungsanlage (ARA) zur Ems geleitet, ohne die organische Belastung dieses Abwassers dadurch zu erhöhen. Bei voller Kapazitätsausnutzung der PWA verringert sich die spezifische Abwassermenge von 2,7 Kubikmeter pro Tonne Papier auf ca. 2,0 Kubikmeter pro Tonne Papier und der Frischwasserverbrauch von 3,6 Kubikmeter pro Tonne Papier auf ca. 3,1 Kubikmeter pro Tonne Papier. Mit der Rückführung des Konzentrats aus der Ultrafiltration in die Belebungskaskade der Biologie wird eine verbesserte Reinigungsleistung der gesamten ARA erreicht. Die verbesserte Abbauleistung wird durch die Reduzierung bei der täglichen CSB- und BSB-Fracht nachgewiesen. Die deutliche Reduzierung der Abwassermenge respektive des Frischwasserbedarfs um ca. 15 bis 20 Prozent stellt einen wichtigen Beitrag zur Ressourceneffizienz dar und steht im Einklang zu den von UPM gesteckten Zielen aus der UPM-Biofore-Strategie. Mit der Rückführung vom 30 Grad Celsius warmen Permeat ins Prozesswasser der Fabrik wird eine erhebliche Menge an Wärmeenergie in den Prozess zurückgeführt. Bei einer durchschnittlichen Permeatmenge von 80 Kubikmeter pro Stunde entspricht das einer Rückführung von ca. 1,67 Megawatt Wärmeleistung. Bei gut 8.200 Betriebsstunden der Fabrik ergibt sich eine jährliche Wärmeleistung von 13.700 Megawatt, die in den Prozess zurückgeführt wird. In der gleichen Größenordnung wird die Umwelt in Bezug auf Wärmeenergie entlastet. Mit der Rückführung der Wärmeleistung wird zusätzlich der CO 2 Ausstoß um 1.384 Tonnen im Jahr durch die vermiedene Dampferzeugung reduziert. Auch wirtschaftlich führt die Rückführung der Wärmeleistung zu einer deutlichen Reduzierung der Energiekosten. Branche: Papier und Pappe Umweltbereich: Wasser / Abwasser Fördernehmer: Nordland Papier GmbH Bundesland: Niedersachsen Laufzeit: 2017 - 2018 Status: Abgeschlossen

Biogasanlage Flugplatz Köthen

Die Gut Mennewitz GmbH, ein Unternehmen das Küken und Bruteier produziert, plant die Errichtung einer Biogasanlage am Standort Flugplatz Köthen (Sachsen-An- halt) mit einer Leistung von 3 x 716 Kilowatt. Geplant ist eine Trockenfermentationsanlage mit drei parallelen Linien. Der besondere Umweltaspekt dieser Konzeption liegt im sehr hohen Anteil des Einsatzstoffes Geflügelkot (70 v. H.). Dieser wird in herkömmlichen Biogasanlagen auf Grund seines hohen Stickstoffgehalts und der entsprechend hohen Wasserbelastung (Salzanreicherung) sowie der damit verbundenen Stickstoffhemmung der für das Funktionieren der Biogasherstellung essentiellen Mikroorganismen bisher nur in geringen Mengen (bis zu 30 v.H.) eingesetzt. Als weitere Einsatzstoffe sind nachwachsende Rohstoffe wie Mais- oder Grassilage vorgesehen. Im geplanten Projekt soll darüber hinaus als weitere innovative Komponente erstmals im Bereich Biogasanlagen eine Gärrest- und Abwasseraufbereitung mittels Decantertechnik, Ultrafiltration und Umkehrosmose eingesetzt werden. Hierdurch wird eine ressourcenschonende Prozesswasseraufbereitung mit anschließender Kreislaufführung ermöglicht. Die in anderen Biogasanlagen bereits übliche Kreislaufführung des Wassers ist wegen der hohen Stickstoffgehalte im Substrat hier nur durch die vorherige Stickstoffentfernung mittels Umkehrosmose möglich. Daneben sind die liegenden Fermenter mit ihren speziellen Rührwerken und Sand- räumeinrichtungen für den Einsatzstoff Hühnerkot weiterentwickelte Verfahrens- techniken, die in diesem Projekt erstmals im Dauereinsatz sind. Bei der herkömmlichen Verwertung von Hühnerkot als Dünger wird dessen Energiegehalt nicht genutzt. Durch die Nutzung von 25.000 Tonnen Geflügelkot und etwa 10.000 Tonnen Mais- und Grassilage werden jährlich rund 2,15 Megawatt elektrischer Energie und 2,23 Megawatt Wärme gewonnen. Damit können der Strombedarf von durchschnittlich rund 4600 Haushalten gedeckt und rund 1,8 Millionen Liter Heizöl eingespart werden. Branche: Energieversorgung Umweltbereich: Luft Fördernehmer: Gut Mennewitz GmbH Bundesland: Sachsen-Anhalt Laufzeit: 2007 - 2009 Status: Abgeschlossen

Optimierung der Ammoniummetawolframat-Konzentration via Umkehrosmose (AMW-OSMO)

Die H.C. Starck Tungsten GmbH produziert aus Recyclingmaterialien und Erzen hochleistungsfähige Wolfram-Pulver und Wolfram-Verbindungen für den Maschinen- und Werkzeugbau, die Automobil- und Energieindustrie, die Luftfahrt sowie die Chemische Industrie. Das Unternehmen beschäftigt weltweit 550 Mitarbeiter. Ein wichtiges Produkt der Wolframchemie ist Ammoniummetawolframat (AMW), welches u.a. als Vorstoff für Industriekatalysatoren verwendet wird. Bisher wurde dieser Stoff über ein energieintensives mehrstufiges Aufbereitungsverfahren produziert. Dabei wurden mehrere Verdampfer zum Wasserentzug bzw. zur Aufkonzentrierung der AMW-Lösung verwendet. Darüber hinaus musste die AMW-Lösung mehrmals im Kreis gefahren werden, um die gewünschte Konzentration zu erreichen. Die Umkehrosmosetechnologie wurde nach dem bisherigen Stand der Technik vorrangig im Bereich der Trinkwasseraufbereitung, der Behandlung von nitrathaltigen Abwässern in der chemischen Industrie sowie zur Meerwasserentsalzung eingesetzt. Ziel des Projektes war die energieeffiziente Herstellung von Ammoniummetawolframat (AMW) aus wolframhaltigen Schrotten durch den erstmaligen Einsatz der Hochdruckumkehrosmose zur Aufkonzentrierung von AMW. Dabei sollte der Verdampfungsprozess durch eine energieeffiziente Umkehrosmoseanlage mit Arbeitsdrücken von über 100 bar substituiert werden. Die Hauptinnovation des Projektes besteht darin, dass die Hochdruckumkehrosmose erstmalig nicht nur auf einfache anorganische Salze in wässriger Lösung angewendet wird, sondern auf Isopolyionen bildende Metallate, bei denen zum Teil sehr komplizierte Gleichgewichte zwischen verschiedenen Spezies bestehen, die durch möglicherweise auftretende selektive Ionenpermeabilitäten der Membran nicht gestört werden dürfen. Kern der Anlage sind zwei parallel geschaltete Druckrohre, von denen jedes mit maximal drei Membranwickelmodulen bestückt werden kann. Diese werden über eine Kreislaufpumpe von ihrer Stirnseite her mit mehreren Kubikmetern pro Stunde auf der Konzentratseite durchströmt. Diesem Kreislauf wird über eine vorgeschaltete Vordruckpumpe und eine Hochdruckpumpe Feedlösung geringerer Konzentration zugeführt. Die Membranen haben sich auch im Langzeitbetrieb als stabil erwiesen, was die wirtschaftliche Nutzung dieser Technologie erst ermöglicht. Im Vergleich zum herkömmlichen Verdampfungsverfahren konnte durch die Hochdruckumkehrosmose eine Energieeinsparung von über 97 Prozent erzielt werden. Bei einer jährlichen Produktionsmenge von 1.000 Tonnen AMW entspricht das einer Einsparung von 5600 Megawattstunden Energie und damit ca. 1.021 Tonnen CO 2 -Äquivalente bzw. ca. 1.023 Kilogramm CO 2 -Äquivalente pro Tonne AMW. Da die H.C. Starck Tungsten GmbH ausschließlich Strom aus erneuerbaren Quellen bezieht, beträgt die CO 2 -Einsparung 100 Prozent. Zusätzlich zur Energieeinsparung wurde auch der Verbrauch an Natronlauge (50-prozentige NaOH) um ca. 39 Tonnen pro Jahr gesenkt. Die Emissionen an Neutralsalz (Na 2 SO 4 ) über das behandelte Abwasser konnten so um etwa 35 Tonnen pro Jahr reduziert werden. Das Vorhaben hat einen sehr guten Modellcharakter und ist prinzipiell auch auf andere Anwendungen zur Aufkonzentrierung von Metallaten oder auf andere komplizierte chemische Systeme übertragbar. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: H.C. Starck Tungsten GmbH Bundesland: Niedersachsen Laufzeit: 2018 - 2020 Status: Abgeschlossen

Prozesswasser-Recycling - Innovative Prozesswasseraufbereitungsanlage

Das mittelständische Logistikunternehmen Neumann Transporte und Sandgruben GmbH & Co. KG gehört zur Neumann Gruppe GmbH mit Sitz in Burg und ist als Dienstleister in der Entsorgungs- und Recyclingwirtschaft tätig. In Reesen (Sachsen-Anhalt) gibt es eine Schlackenassaufbereitungsanlage, in der die Asche aus Müllverbrennungsanlagen einen Nassaufbereitungsprozess durchläuft. Die Schlackenassaufbereitung ist ein sehr wasserintensiver Prozess, bei dem Abwässer mit hohen Salzfrachten entstehen. Bisher werden die prozessbedingten Abwässer aufwändig aufbereitet, per Straßentransport in eine Industriekläranlage befördert und entsorgt. Für den Aufbereitungsprozess der Schlacke werden Prozessfrischwassermengen benötigt, die aktuell dem Grundwasserreservoir entnommen werden. Um den Transportaufwand für die Abwässer zu vermeiden und die Grundwasserentnahme zu minimieren, plant das Unternehmen mittels innovativer Abwasseraufbereitung (Umkehrosmose) einen nahezu geschlossenen Stoffkreislauf zu schaffen. Gleichzeitig verbessert sich damit auch die Qualität des mineralischen Rückstandes, so dass von einer besseren Verwertbarkeit auszugehen ist. Das in der Umkehrosmose entstehende Konzentrat (Permeat) soll in einer Vakuumverdampfungsanlage am Standort des Müllheizkraftwerks Rothensee behandelt werden. Gleichzeitig können Synergien am Standort der Abfallverbrennungsanlage genutzt werden, wie bspw. die Abwärme aus der Kraft-Wärme-Kopplung, das nahezu ammoniakfreien Destillats der Verdampferanlage für technische Zwecke und das Permeat der Umkehrosmose als Kühlwassernachspeisung für den Kühlturm. Die Innovation des neuen Verfahrens besteht darin, dass mittels Kombination und Weiterentwicklung bereits bestehender Recyclingverfahren erstmalig Prozesswasser aus der Schlackeaufbereitung behandelt und der Stoffkreislauf nahezu geschlossen werden kann. Insgesamt kann der Einsatz von Frischwasser nahezu vollständig ersetzt und weitgehend auf Grundwasserentnahmen verzichtet werden. Zusätzlich können Lärmemissionen, Energieverbrauch und Deponievolumen reduziert werden. Im Übrigen können mit der Umsetzung des Projekts jährlich 1.728 Tonnen CO 2 -Äquivalente, also etwa 86 Prozent, eingespart werden. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Wasser / Abwasser Fördernehmer: Neumann Transporte und Sandgruben GmbH & Co. KG Bundesland: Sachsen-Anhalt Laufzeit: seit 2019 Status: Laufend

Deponietechnik

Im Laufe der letzten 40 Jahre wurden die technischen Anforderungen an Deponien immer weiterentwickelt. Die Folge waren Übergangs- und Bestandschutzregelungen für Deponien, die von Ihrem Wesen her als dauerhafte Beseitigungsanlagen angelegt sind. Eine umweltverträgliche Deponierung wird durch eine Vielzahl technischer Maßnahmen bewirkt. Hierfür wurde 1986 das Multibarrierenkonzept entwickelt. Weitere wichtige Elemente für eine das Gemeinwohl nicht belastende Deponierung von Abfällen sind die Überwachung, Erfassung, Sammlung, Reinigung und Beseitigung bzw. Verwertung von Deponiesickerwasser und Deponiegas . Im Rahmen des Inkrafttretens der Verordnung zur Vereinfachung des Deponierechtes (DepV) zum 16.07.2009 wurden umfangreiche Anforderungen an die Errichtung, den Betrieb, die Stilllegung und die Nachsorge nach dem Stand der Technik von Deponien, insbesondere Anforderungen an den Standort, die geologische Barriere, die Abdichtungskomponenten und –systeme sowie Betriebsweise verbindlich und verpflichtend eingeführt. Im Bereich der Abdichtungskomponenten nach dem Anhang 1 der Deponieverordnung wird der Stand der Technik für Geokunststoffe, Polymere und serienmäßig hergestellte Dichtungs-kontrollsysteme durch die Zulassung dieser Materialien, Komponenten oder Systeme durch die Bundesanstalt für Materialforschung und -prüfung (BAM) festgelegt. Für sonstige Materialien, Komponenten oder Systeme erfolgt dies durch eine bundeseinheitliche Eignungsbeurteilung der Länder in Verbindung mit den Prüfkriterien und Anforderungen an den fachgerechten Einbau sowie an das Qualitätsmanagement durch bundeseinheitliche Qualitätsstandards (BQS). Die LUBW als fachbehördliche Kompetenzstelle in BW ist in den beiden Zuständigkeitsgremien (Fachbeirat der BAM sowie LAGA Ad-hoc AG Deponietechnik) vertreten und ist daher an der Fortentwicklung zum Stand der Technik aktiv eingebunden. Im Hinblick auf die allgemeinen Anforderungen zur Feststellung der endgültigen Stilllegung und zur Entlassung aus der Nachsorgephase wird auf die Hinweise der baden-württembergischen „Vollzugsorientierende Hinweise zur Feststellung der endgültigen Stilllegung von Deponien“ aus 2019 sowie der „ Grundsätze zur Entlassung von Deponien aus der Nachsorge “ der LAGA aus 2018 verwiesen. Die hierin genannten Beurteilungsmaßstäbe werden durch die zuständigen Behörden im jeweiligen Anwendungsfall zu Grunde gelegt. Das Multibarrierenkonzept, das 1986 entwickelt wurde, besteht aus mehreren Sicherungssystemen (Barrieren), die unabhängig voneinander wirken und somit Umweltschäden und -belastungen auch dann noch verhindern, wenn eine Barriere versagt. Aufbau und Funktionsweise des Multibarrierenkonzepts: Der Standort muss durch seine Geologie und Hydrogeologie geeignet sein. Es muss verhindert werden, dass Deponiesickerwasser in den Untergrund sickert und Boden und Grundwasser verunreinigt. Deshalb muss der Untergrund auch in der näheren Umgebung einer Deponie eine wasserundurchlässige Schicht aufweisen. Es muss ein permanent zu gewährleistender Mindestabstand von Grundwasser zum Deponieuntergrund vorhanden sein. Besonders schützenswerte Flächen müssen erhalten werden. Darüber hinaus muss ein ausreichender Schutzabstand zu besonders sensiblen Gebieten (z. B. Trinkwasserschutzgebiete) gewährleistet werden. Auf tektonischem Gebiet, aber auch auf Bereichen, die von Überschwemmungen, Hangrutschungen oder Lawinen betroffen sind, dürfen keine Deponien errichtet werden. Die schädliche Beeinträchtigung von Grundwasser durch verunreinigtes Deponiesickerwasser soll durch die Errichtung einer wirksamen, dichten, dauerhaften, widerstandfähigen und funktionstüchtigen Deponiebasisabdichtung verhindert werden. Je nach den geplanten abzulagernden Abfällen in die Deponie ist eine Deponiebasisabdichtung nach DepV für die Deponieklassen 0, I – III zu errichten. Das auf der Deponiebasis aufgefangene Deponiesickerwasser wird durch Dränagerohre nach außen zu einer Sickerwasserreinigungsanlage geführt, wo es so weit gereinigt wird, dass es in ein Oberflächengewässer oder eine Kläranlage geleitet werden kann. Der durch Vorbehandlung weitgehend mineralisierte und schwer wasserlösliche Abfall zählt zu einer der wichtigsten Barrieren. Diese Barriere wird durch die Abtrennung besonders gefährlicher Anteile, eine chemisch-physikalische oder eine thermische Vorbehandlung (Verbrennung) erreicht. Um Abfälle auf Deponien der entsprechenden Klassen ablagern zu können, müssen sie die Zuordnungskriterien (Annahmekriterien) der DepV einhalten. Durch die Einhaltung dieser Zuordnungswerte soll die Entstehung von Deponiegas und die Entstehung von organisch belastetem Deponiesickerwasser weitgehend verhindert werden. Wenn im Deponiekörper weder Deponiegas noch Deponiesickerwasser entstehen, finden auch nur noch geringe Setzungen statt. Der Deponiekörper muss so aufgebaut werden, dass er stabil ist und keine Gase emittiert werden, obwohl chemische, biologische und physikalische Prozesse ablaufen. Dies wird durch einen zuverlässig geführten Betrieb der Deponie wie die Verdichtung des Abfalls, die ständige Kontrolle der Emissionen, der regelmäßigen Abdeckung des abgelagerten Abfalls und der ordnungsmäßigen Deponiegas- und Sickerwasserbehandlung gewährleistet. Wasser soll nicht eindringen können, damit nicht zu viel Sickerwasser gebildet wird. Durch eine Deponieoberflächenabdichtung soll das Eindringen von Niederschlagswasser in die Deponie und somit eine Neubildung von Deponiesickerwasser verhindert werden. Ein Oberflächenabdichtungssystem besteht aus 2 Hauptkomponenten. Die eine Komponente ist die Abdichtungsschicht, die aus mehreren Elementen besteht und Deponieemissionen verhindern soll. Mit der zweiten Komponente, der Rekultivierungsschicht, wird das Eindringen von Regenwasser unterbunden. Nach der vollständigen Verfüllung muss die Deponie weiter überwacht werden. Alle Systeme müssen so aufgebaut sein, dass sie repariert werden können (z. B. die Rohre der Sickerwassererfassung). Einfache Nachsorge muss gewährleistet sein, z. B. indem keine Schächte, Pumpwerke und Gänge im Deponiekörper eingebaut sind. Es müssen weiterhin Messungen durchgeführt werden. Dieses Konzept bildet auch weiterhin die etablierte Grundlage der technischen Anforderungen nach der aktuell gültigen Deponieverordnung (DepV). Als Deponiesickerwasser bezeichnet man alle Abwässer, die mit dem in der Deponie abgelagerten Abfall in Berührung gekommen sind. Das Deponiesickerwasser entsteht im Wesentlichen durch Niederschlagswasser, das während des Einbaus der Abfälle, wenn die Deponieoberfläche noch offen ist, in die Deponie eindringt. Ebenso entsteht durch die Eigenfeuchte des Abfalls Deponiesickerwasser. Seit 2005 ist der Anteil an der Eigenfeuchte des Abfalls durch die Einführung von Annahmekriterien erheblich minimiert worden. In wenigen Fällen, bei denen in früheren Zeiten keine oder eine nach heutigen Kriterien „minderwertige Deponiebasisabdichtung“ eingebaut wurde, kann auch Grund- oder Fremdwasser (ältere Deponieabschnitte) als Ursachen für Deponiesickerwasser genannt werden. Das Deponiesickerwasser wird in der Regel an der Deponiebasis gesammelt und über eine Sickerwasserfassung (Basisentwässerungsschicht mit Rohr- und Schachtleitungssystemen) einer speziellen Deponiesickerwasserreinigungsanlage oder einer anderweitig geeigneten Abwasserbehandlungsanlage zugeführt. Bei Deponien oder Deponieabschnitten, die vor oder bis zum 01.06.2005 mit unvorbehandelten, organischen Siedlungsabfällen verfüllt wurden, kommen zur Reinigung des Deponiesickerwassers u. a. Verfahrenstechniken wie Umkehrosmose, Ultrafiltration, Denitrifikation/Nitrifikation und Aktivkohlebehandlung, auch in Kombinationen, zum Einsatz. Bei Deponien oder Deponieabschnitten, die ausschließlich (nach dem 01.06.2005) nur mit vorbehandelten und nicht organikreichen Abfällen verfüllt wurden, kann die Sickerwasserreinigung auch über andere Abwasserbehandlungsanlagen (z. T. kommunale Kläranlagen) erfolgen, da keine relevanten organischen Frachten behandelt werden müssen. Zum Thema Deponiesickerwasser sind auf der Seite „ Forschungsprojekte im Deponiebereich “ vom Umweltministerium Baden-Württemberg im Rahmen der Abfall- und Deponietechnik mit dem „Kommunalen Investitionsfond" (KIF) geförderte Projekte eingestellt.. Durch die bis zum Jahr 2005 zulässige Ablagerung von unbehandelten Abfällen mit hohen organischen Anteilen auf vielen Deponien findet immer noch ein weitgehend nicht beeinflussbarer Abbauprozess statt. In den meisten Fällen stellen sich dabei anaerobe Verhältnisse ein (Abbauprozesse ohne Sauerstoff). Endprodukt dieser Abbauprozesse ist ein Faulgas mit den Hauptbestandteilen Methan (CH 4 ) und Kohlendioxid (CO 2 ) - das sogenannte Deponiegas. Sofern die Menge und die Güte des Deponiegases es zulassen, findet eine energetische Verwertung, in der Regel in einem Blockheizkraftwerken (BHKW) statt. Geht im Laufe der Zeit die Gasproduktion zurück, muss das „Deponieschwachgas“ wegen seiner umweltschädlichen Eigenschaften (Methan ist ein Treibhausgas) in geeigneten Anlagen verwertet oder beseitigt werden. Hierzu werden geeignete Anlagen zur Schwachgasbehandlung (z. B. CHC-Anlagen, E-Flox-Brenner, Vocsi-Box oder modifizierte Fackelanlagen) eingesetzt. Neben der Behandlung von Deponiegas bestehen auch Möglichkeiten der Deponiebelüftung, die einen aeroben Abbau der organischen Substanz bewirken, sodass kein umweltschädliches Methan entsteht. Aktuelle Entwicklungen im Thema Klimaschutz zeigen, dass sich der Maßstab und die Relevanz der Deponieentgasung an ehemaligen „Hausmüll- bzw. Bioreaktordeponien“ vom energetischen Verwertungs- und Energienutzungspotential zunehmend in Klimaschutzvorsorgeprinzipien wandelt. Dies kommt auch durch aktuelle Kampagnen des nationalen Klimaschutzes (BMUB – „Richtlinie zur Förderung von Klimaschutzprojekten in sozialen, kulturellen und öffentlichen Einrichtungen (Kommunalrichtlinie) im Rahmen der Nationalen Klimaschutzinitiative, Berlin: Bundesanzeiger vom 04.07.2016) zum Ausdruck. Zum Thema Deponiegas  und -behandlung sind auf der Seite „ Forschungsprojekte im Deponiebereich “ vom Umweltministerium Baden-Württemberg im Rahmen der Abfall- und Deponietechnik mit dem „Kommunalen Investitionsfond" (KIF) geförderte Projekte eingestellt. .

1 2 3 4 525 26 27