Die Lebens- und Umweltqualität in den Quartieren der Hauptstadt sind sehr unterschiedlich. In vielen Teilen Berlins – vor allem im hochverdichteten Innenstadtbereich – konzentrieren sich gesundheitsrelevante Umweltbelastungen, wie Verkehrslärm, Luftschadstoffe, unzureichende Ausstattung mit Grünflächen und bioklimatischen Belastungen. Viele Gebiete haben gleichzeitig eine hohe soziale Problematik und sind überproportional durch Mehrfachbelastungen betroffen. Diese Themen werden in Berlin unter dem Begriff Umweltgerechtigkeit diskutiert und gewinnen auch vor dem Hintergrund des Klimawandels an Bedeutung. Umweltschutz und soziale Gerechtigkeit sind aufs engste miteinander verknüpft und betreffen vor allem die Metropolenräume. Menschen mit geringem Einkommen und niedriger Bildung sind in Deutschland oft höheren Gesundheitsbelastungen durch Umweltprobleme ausgesetzt als Menschen, die finanziell bessergestellt sind. Sie wohnen oft an stark befahrenen Straßen und sind besonders häufig von Lärm und Luftverschmutzungen betroffen. Umweltgerechtigkeit verfolgt das Ziel, umweltbezogene gesundheitliche Beeinträchtigungen zu vermeiden und zu beseitigen sowie bestmögliche umweltbezogene Gesundheitschancen herzustellen. Als Leitbild zielt Umweltgerechtigkeit auf die Vermeidung und den Abbau der sozialräumlichen Konzentration gesundheitsrelevanter Umweltbelastungen sowie die Gewährleistung eines sozialräumlich gerechten Zugangs zu Umweltressourcen. Das Themenfeld “Umweltgerechtigkeit im Land Berlin” liegt an der Schnittstelle von Stadtentwicklungs-, Umwelt-, Gesundheits- und Sozialpolitik und befasst sich mit Art, Ausmaß und Folgen ungleicher räumlicher Verteilungen von Umweltbelastungen und Ressourcen sowie den Gründen dafür. Grundlage ist die kleinräumige Umweltbelastungsanalyse, die wesentliche Analysen und Ergebnisse der Umweltgerechtigkeitsuntersuchungen verknüpft und auf einer Fachebene zusammenfügt. Die Berliner Umweltgerechtigkeitskarte ermöglicht einen Gesamtüberblick über die Umweltqualität in den Quartieren der Hauptstadt. Basis der wissenschaftlichen Analysen sind die – für die Arbeit der planenden Fachverwaltungen – verbindlich festgelegten 542 lebensweltlich orientierten Planungsräume (LOR) in der Hauptstadt Berlin. Bild: SenMVKU Umweltgerechtigkeitsatlas Datenbasiert zeigt der Atlas, in welchen Berliner Quartieren Umweltbelastungen und soziale Benachteiligung räumlich zusammenfallen. Er liefert eine fundierte Grundlage für integrierte Planungs- und Entscheidungsprozesse. Weitere Informationen Bild: Jan Stradtmann Begleitende Publikationen Die begleitenden Publikationen zeigen, wie vielfältige Maßnahmen zur Verbesserung der Umweltgerechtigkeit in Berlin beitragen können. Sie bieten praxisnahe Einblicke, Impulse und Strategien für unterschiedliche Akteurinnen und Akteure. Weitere Informationen Bild: Dagmar Schwelle Veranstaltungen Der Berliner Umweltgerechtigkeits-Kongress bietet Raum für Austausch, Vernetzung und fachliche Impulse rund um Umweltgerechtigkeit. Hier finden sich die Dokumentation des letzten Kongresses sowie Informationen bei künftigen Veranstaltungen. Weitere Informationen
Charakterisierung einer organischen Umweltbelastung auf einem ehemaligen Gaswerkstand; Charakterisierung von Oberflaechenwaessern, Grundwaessern und Thermalwaessern und moeglicher Mischprozesse; Untersuchung von saisonalen Schwankungen; Experimentelle Untersuchungen zum Isotopenaustausch von organischen Belastungen und Waessern.
Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar. Fazit: In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.
Überwachung der Umweltradioaktivität aus künstlichen und natürlichen Quellen: Luft, Gewässer, Niederschläge, Erdboden, Gras, Lebensmittel, Strahlendosen, in-situ-Messungen Überwachung von Kernanlagen, Betrieben und Spitälern die radioaktive Stoffe verwenden Erfassung der natürlichen Radioaktivität etc. Koordination des nationalen Überwachungsprogrammes Sammlung, Auswertung und Veröffentlichung der Daten sowie Ermittlung der Strahlendosen der Bevölkerung aus künstlichen und natürlichen Strahlenquellen Weiterentwicklung der Überwachungs- und Messverfahren die Ergebnisse werden jährlich vom Amt (als Print) und auf dem Internet veröffentlicht.
Ziel des Vorhabens war die Reduzierung der durch HKW verursachten Umweltbelastungen durch die Entwicklung und Untersuchung alternativer Verfahren mit wässrigen Medien und deren anlagentechnische Umsetzung. Ergebnisse Für verschiedene Anwendungen wurden Verfahrens- und Anlagentechniken zur Reinigung mit wässrigen Medien entwickelt, die die bisherige Reinigung mit HKW ohne Qualitätseinbussen ersetzen. Schwerpunkt der Verfahrensentwicklung waren die Ausarbeitung von Methoden zur Reinigerauswahl, die Untersuchung von verschiedenen Spül.- und Trocknungstechniken sowie des Einflusses von Ultraschall bei der Tauchreinigung. Zur Qualitätssicherung wurden Methoden zur Restschmutzbestimmung und zur analytischen Untersuchung von Reinigerlösungen ausgearbeitet. Für eine Erhöhung der Badstandzeiten wurden Regenerierverfahren erprobt und eingesetzt. Für die Anwendung der Reinigungsverfahren wurde, als kostengünstige Lösung, ein Konzept zum Umbau von vorhandenen Anlagen mit CKW entwickelt und realisiert. Weiterhin wurden verschiedene Anlagentypen zur wässrigen Reinigung konzipiert und in Fertigungen installiert. Dies sind flexible Zentralanlagen zur Reinigung von Teilen aus verschiedenen Fertigungsbereichen sowie Anlagen zur Reinigung im Fertigungsfluss.
<p>Altglas kann unendlich oft wieder eingeschmolzen und zur Herstellung neuer Glasprodukte genutzt werden. Solch eine erneute stoffliche Nutzung ist umweltverträglich und kann viel Energie (ca. 10 Prozent) und viele Rohstoffe einsparen, wenn die verschiedenen Glasprodukte wie Flaschen und Fenstergläser an ihrem Lebensende dem richtigen Entsorgungsweg zugeführt werden.</p><p>Massenprodukt Glas</p><p>In Deutschland stellten Glashersteller 2024 rund 6,661 Millionen Tonnen (Mio. t) Glas her. Aus 3,788 Mio. t davon wurde Behälterglas gefertigt, aus 1,794 Mio. t Flachglas. Aus rund 292.500 Tonnen (t) entstanden spezielle Gläser für Haushalte, Forschung und Wirtschaft. Der folgende Text beschreibt die Sammlung und Verwertung dieser Gläser. Zusätzlich gibt es Produzenten von Mineralwollen, die rund 786.000 t Glas- und Steinwolle herstellen, die als Dämmmaterial eingesetzt wurden (siehe Abb. „Glasproduktion im Jahr 2024 und die Anteile der einzelnen Glasbranchen“).</p><p>Glas: gut recycelbar!</p><p>Glas lässt sich unendlich oft wieder verwenden. Es kann beliebig oft in den Schmelzprozess zurückgeführt und zu neuen Produkten verarbeitet werden. Da recyceltes Glas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, sinkt der Energiebedarf, wenn Glasscherben zugesetzt werden. Über den Daumen lässt sich sagen, dass der Energiebedarf um etwa 0,2 bis 0,3 % sinkt, wird ein Prozent Altglas dem Schmelzofen hinzugefügt. Einschmelzen von Altglas schützt so das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> und spart Rohstoffe wie Quarzsand, Soda und Kalk ein. Das trägt ebenfalls zur Verringerung der dem Herstellungsprozess anrechenbaren Umweltbelastungen bei. Weiterhin braucht eingeschmolzenes Altglas nicht deponiert zu werden.</p><p>Glashersteller setzen Scherben, die als Ausschuss bei der Produktion anfallen, wieder ein. Der Einsatz von Altglas hängt aber von den herstellungsspezifischen Anforderungen an den Reinheitsgrad der Scherben ab. So kann gefärbtes Glas nicht zur Herstellung von Weißglas genutzt werden und Keramikscherben oder Steine stören den Produktionsprozess.</p><p>Im Jahr 2015 haben Behälterglashersteller in Glaswannen durchschnittlich 60 % Scherben eingesetzt, bei Grünglas sogar bis zu 90 %.</p><p>Altglassammlung mit Tradition</p><p>Für Behälterglas wurde bereits im Jahr 1974 ein flächendeckendes Sammelsystem eingerichtet. Meist werden Bringcontainersysteme zur getrennten Erfassung von Weiß-, Braun- und Grünglas eingesetzt. Über 250.000 solcher Altglascontainer sind bundesweit im Einsatz.</p><p>Die Aufbereitung des gesammelten Behälterglases erfolgt zwar weitestgehend vollautomatisch. Die Farbsortierung erfordert jedoch aus technischen und ökonomischen Gründen eine nach Farben getrennte Sammlung der Glasbehälter. So ist die Sortenreinheit der gesammelten Glasmengen eine Voraussetzung für die Rückführung von Behälterglasscherben in den Schmelzprozess zur Herstellung neuer Flaschen und Gläser.</p><p>Im Jahr 2006 erreichte die Behälterglasverwertung eine Quote von 83,6 %. Bis zu diesem Jahr hat die Gesellschaft für Glasrecycling und Abfallvermeidung mbH (GGA) die entsprechenden Daten zur Verfügung gestellt. Nach dem kartellrechtlichen Verbot dieser Organisation fehlen verlässliche Daten über das Aufkommen von Behälterglasscherben. Zahlen müssen nunmehr aus den entsprechenden Abfallstatistiken sowie den jährlichen Erhebungen zum Aufkommen und zur Verwertung von Verpackungsabfällen in Deutschland (siehe auch <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/verpackungsabfaelle">„Verpackungsabfälle“</a>) entnommen werden. Diese Veröffentlichung weist für das Jahr 2022 eine Verwertungsquote von 84,6 % für auf den Markt gebrachte Behältergläser aus (siehe Abb. „Verwertung von Glas aus gebrauchten Verpackungen“). </p><p>Generell ist eine Vorsortierung beim Verbraucher unbedingt erforderlich. Fensterglas, Autoglas, Kristallglas und feuerfeste Gläser wie Laborglas, Ceran®, Pyrex® lassen sich bei der Altglasaufbereitung nur schwer aussortieren und können zu hohen Produktionsausfällen oder zur Anreicherung von Schwermetallen im Behälterglaskreislauf führen, zum Beispiel durch Bleikristallglasscherben. Deshalb dürfen diese Gläser nicht in Altglasbehältern entsorgt werden.</p><p>Stoffliche Verwertung von Behälterglas</p><p>In der Behälterglasindustrie stellt Altglas mittlerweile die wichtigste Rohstoffkomponente dar. Eine Tonne Altglas darf jedoch nicht mehr als 25 g an Keramik, Steinen und Porzellan (KSP-Fraktion) enthalten und maximal 5 g an Nichteisenmetallen wie Aluminium. Zudem sind Grenzwerte für Eisenmetalle und für organische Bestandteile wie Kunststoffe und Papier zu unterschreiten.</p><p>Besonders wichtig ist die Farbreinheit der Altglasscherben. Um weißes Behälterglas herzustellen, ist bei einer Altglasscherbenzugabe von 50 % eine Farbreinheit von 99,7 % erforderlich. Der Fehlfarbenanteil im Braunglas darf die 8 %-Marke nicht überschreiten. Lediglich grünes Glas lässt einen Fehlfarbenanteil von bis zu 15 % zu.</p><p>Stoffliche Verwertung von Flachglas</p><p>Für Flachglasprodukte wie Fensterglas und andere Baugläser gelten besondere Qualitätsanforderungen wie Farbreinheit und Blasenfreiheit. Die Flachglasindustrie setzt daher überwiegend sortenreine Glasscherben aus weiterverarbeitenden Betrieben und Eigenscherben ein. In den letzten Jahren wurden die Sammelsysteme zur Erfassung möglichst sortenreiner und fremdstoffarmer Flachglasprodukte im weiterverarbeitenden Gewerbe ausgebaut. Altglas, das nicht den vorgegebenen Anforderungen an den Reinheitsgrad entspricht, muss aufbereitet werden. Hierfür stehen in Deutschland derzeit zehn Aufbereitungsanlagen zur Verfügung.</p><p>Altglasfraktionen, die sich aus Qualitätsgründen nicht für die Herstellung neuer Flachgläser eignen, können in geringem Umfang bei der Herstellung von Behälterglas eingesetzt werden, aber auch bei der Herstellung von Dämmwolle, Schmirgelpapier, Schaumglas und Glasbausteinen.</p><p>Autoscheiben werden geschreddert</p><p>Demontagebetriebe für Altfahrzeuge müssen grundsätzlich Front-, Heck- und Seitenscheiben sowie Glasdächer von Altfahrzeugen ausbauen und dem Recycling zuführen. Das schreibt die Altfahrzeugverordnung vor (siehe <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/altfahrzeugverwertung-fahrzeugverbleib">"Altfahrzeugverwertung und Fahrzeugverbleib"</a>). Im Jahr 2023 nahmen die deutschen Altfahrzeug-Demontagebetriebe 253.195 Altfahrzeuge zur Behandlung an. Sie enthielten im Schnitt etwa 35 kg Fahrzeugglas je Altfahrzeug, insgesamt rund 8.900 t. Aufgrund behördlicher Ausnahmen von der Demontagepflicht haben die Altfahrzeugverwerter nach Angaben des <a href="https://www-genesis.destatis.de/genesis/online?operation=table&code=32111-0004&bypass=true&levelindex=1&levelid=1698847590512#abreadcrumb">Statistischen Bundesamtes</a> (öffentlich verfügbare Werte auf 100 t gerundet) davon nur etwa 7 % – also 578 t – demontiert. Der überwiegende Anteil der Fahrzeugscheiben und Glasdächer gelangt mit den Altfahrzeugen in Schredderanlagen. Die dabei anfallenden nichtmetallischen mineralischen Rückstände wurden im Jahr 2023 überwiegend verwertet, etwa als Bergversatz oder im Deponiebau, und teilweise beseitigt.</p><p>Über die Ersatzverglasung, also den Anfall von Fahrzeugglas durch Scheibenwechsel, liegt eine grobe Schätzung für das Jahr 2020 vor: In Markenwerkstätten wurden in Deutschland schätzungsweise rund 1,7 Millionen Verbundglasscheiben ersetzt. Geht man von einem durchschnittlichen Gewicht einer Windschutzscheibe von knapp 10 kg aus, so bedeutet dies einen Anfall von etwa 16.000 t an Verbundsicherheitsglas (VSG). Hinzu kommt noch eine unbekannte Menge aus der Ersatzverglasung aus weiteren Werkstätten. Etwa 90 % der Altgläser aus der Ersatzverglasung werden einer Verwertung zugeführt.</p>
Die Raumfahrt wächst rasant – und mit ihr die ökologischen Herausforderungen im All und auf der Erde. Der Trendbericht „Weltraum“ zeigt, welche Chancen satellitengestützte Anwendungen etwa für Klimaschutz und Umweltbeobachtung bieten, macht aber zugleich deutlich, wie steigende Startzahlen, neue Akteure und wachsende Satellitenkonstellationen zu Umweltbelastungen und Weltraumschrott führen. Auch weniger beachtete Entwicklungen wie neue Weltraumbahnhöfe, wiederverwendbare Antriebssysteme oder geplante Rohstoffgewinnung im All werden in den Blick genommen. Die Studie analysiert zentrale Entwicklungen und formuliert Handlungsfelder für eine nachhaltige Nutzung des Weltraums. Veröffentlicht in Broschüren.
Minderung der Umweltbelastung durch Minderung des Brennstoffverbrauches durch Anwendung der fernsteuerbaren Einzelraum-Temperaturregelung und der fernschaltbaren Einzelraumlueftung bei zentralen Heizungs- und Lueftungsanlagen. 'Elastische Heizung' - 'Elastische Lueftung'. Erforschung der Energieeinsparungsquoten durch einfachste Schaltung von Rohrnetz und Heizkoerperventilen, die zentral oder dezentral, manuell oder programmiert ferngesteuert werden. Dadurch nutzungsgerechter Heizungsbetrieb jedes einzelnen Raumes. Temperatur exakt geregelt. Vermeidung von Ueberheizungen, Nutzung von Waermegewinn aus Umwelt, Sonneneinwirkung, Geraete-, Beleuchtungs- und Personenwaerme zur Waermebedarfsdeckung der einzelnen Raeume. In gleicher Weise Lueftungsbetrieb fuer die einzelnen Raeume schaltbar entsprechend der Nutzungszeiten. Keine unnoetige Lufttransporte, keine unnoetige Luftaufheizung oder Luftkuehlung. Kein Raum wird unnoetig beheizt oder belueftet.
Aufgrund ihrer Symbiosenatur stellen die Flechtenlager die empfindlichsten Zeigerpflanzen (Bioindikatoren) des Festlandes dar. Nicht zuletzt deshalb wurde in den letzten Jahrzehnten vielerorts damit begonnen, die gross- und kleinraeumige Flechtenverteilung in Form von Punktrasterkarten zu erfassen, wobei Nordrhein-Westfalen weit hinter anderen Bundeslaendern wie Baden-Wuerttemberg, Bayern oder dem Saarland zuruecksteht. Nach aelteren Florenlisten sind aus NRW knapp 1000 Flechtensippen bekannt; 19 davon muessen als ausgestorben bzw verschollen, ueber 100 als mehr oder minder bedroht gelten. Die Auswertung der Punktrasterkarten verspricht grundlegende Aufschluesse ueber Sippengefaehrdung und Schadstoffbelastung im Zusammenhang mit Landschaftsgestaltung und Naturschutz im Bezugsgebiet. Inzwischen konnte derjenige Teilbereich, welcher die Laub- und Strauchflechten der Eifel betrifft, abgeschlossen werden. Hierbei wurden auch die suedlichen, politisch zu Rheinland-Pfalz gehoerenden Gebiete dieses Mittelgebirges beruecksichtigt.
| Origin | Count |
|---|---|
| Bund | 3745 |
| Europa | 8 |
| Kommune | 3 |
| Land | 282 |
| Wissenschaft | 16 |
| Zivilgesellschaft | 33 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Daten und Messstellen | 17 |
| Ereignis | 10 |
| Förderprogramm | 3215 |
| Gesetzestext | 3 |
| Hochwertiger Datensatz | 3 |
| Taxon | 2 |
| Text | 494 |
| Umweltprüfung | 15 |
| Videomaterial | 1 |
| unbekannt | 257 |
| License | Count |
|---|---|
| geschlossen | 616 |
| offen | 3347 |
| unbekannt | 52 |
| Language | Count |
|---|---|
| Deutsch | 3693 |
| Englisch | 604 |
| Resource type | Count |
|---|---|
| Archiv | 56 |
| Bild | 20 |
| Datei | 59 |
| Dokument | 287 |
| Keine | 2791 |
| Multimedia | 4 |
| Unbekannt | 9 |
| Webdienst | 10 |
| Webseite | 1077 |
| Topic | Count |
|---|---|
| Boden | 4014 |
| Lebewesen und Lebensräume | 4015 |
| Luft | 4014 |
| Mensch und Umwelt | 3998 |
| Wasser | 4015 |
| Weitere | 3960 |