API src

Found 110 results.

Verkehr_WFS - Ladestationen - OGC WFS Interface

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Verkehr dar.:Ladesäulen für E-Automobile, Standorte im Saarland

INSPIRE Download Service (predefined ATOM) für Datensatz Ladesäulen für E-Automobile

Beschreibung des INSPIRE Download Service (predefined Atom): Ladesäulen für E-Automobile, Standorte im Saarland, Die Daten kommen von der Bundesnetzagentur. Die Bundesnetzagentur veröffentlicht bewusst nur die Ladepunkte, die den Anforderungen der LSV genügen, um somit ein besonderes Augenmerk auf die technische Sicherheit der Anlagen zu legen. - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert

Verkehr_WFS - Ladestationen - OGC API Features

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Verkehr dar.:Ladesäulen für E-Automobile, Standorte im Saarland

Zukunftsforschung, fortgeschrittene Entwicklungs- und Umsetzungsaktivitäten für den Transport auf der Straße (FUTURE-RADAR)

Das Projekt FUTURE-RADAR wird den Beratenden Ausschuss für die Europäische Forschung im Bereich Straßenverkehr (European Road Transport Research Advisory Council, ERTRAC) und die Europäische Green Vehicle Initiative PPP bei der Schaffung und Umsetzung von Forschungs- und Innovationsstrategien für ein nachhaltiges und wettbewerbsfähiges europäisches Straßentransportsystem unterstützen. FUTURE-RADAR wird allen relevanten Stakeholdern konsensbasierte Pläne und Roadmaps zur Bewältigung der gesellschaftlichen, ökologischen, ökonomischen und technologischen Herausforderungen in Bereichen wie Verkehrssicherheit, Stadtmobilität, Fernverkehr, automatisierter Straßentransport und globale Wettbewerbsfähigkeit bereitstellen. In allen Fragen zu Energie und Umwelt wird FUTURE-RADAR den Austausch zwischen Städten in Europa, Asien und Lateinamerika über städtische Elektromobilitätslösungen erleichtern. Die Aktivitäten von FUTURE-RADAR umfassen Projektüberwachung, strategische Forschungspläne, internationale Einschätzungen und Empfehlungen für den Einsatz von Innovation ebenso wie internationale Projektpartnerschaften und umfassende Verbreitungs- und Sensibilisierungsmaßnahmen. Dadurch bietet FUTURE-RADAR die Möglichkeit, Aktivitäten zur Weiterentwicklung einer qualitativ hochwertigen Forschung im Bereich Straßenverkehr zu stärken und weiterzuentwickeln.

BaSiS-Entwicklung einer physikalisch basierten und experimentell validierten Multiskalen-Simulationsmethodik zur Prädiktion des Crashverhaltens von Lithium-Ionen-Batterien und zur frühzeitigen Sicherheitsbewertung von Zelldesigns, Teilvorhaben: Ausgestaltung und Realisation der neuen Zellhülle

In der Automobilindustrie rückt das Thema Ressourcenschonung durch Leichtbau mit Faserverbundstrukturen vermehrt in den Fokus, um zukünftig umweltfreundlichere Produkte anbieten zu können, die den ambitionierten Zielsetzungen der Politik gerecht werden. Gerade im Bereich der E-Mobilität kann durch Gewichtsreduktion mit Materialleichtbau die Fahrzeugreichweite und damit die Marktakzeptanz gesteigert werden. Gleichzeitig schafft der Trend zur Miniaturisierung von Sensoren und Elektroniken neue Möglichkeiten. So können Sensor und Leitungssysteme in Faserverbundstrukturen integriert werden, um nicht nur leichte sondern auch 'smarte' Komponenten zu bilden. Im Rahmen des Projektes BaSiS ist INVENT daher als Experte für Faserverbundtechnologie und Funktionsintegration für die Ausgestaltung und Realisation einer neuartigen Batteriezellhülle für die Automobilindustrie, unter den genannten Vorzeichen, verantwortlich. Grundlegend sind dabei zunächst alle Anforderungen an bisherige Zellhüllen zu berücksichtigen und zu erfüllen. Als Herausforderungen sind insbesondere das Wärmemanagement und die chemischen Anforderungen an die verwendeten Werkstoffe zu nennen. Zusätzlich zu diesen Grundfunktionen werden im Rahmen des Projektes neue Funktionen identifiziert und in das Bauteil integriert. Diese zielen darauf ab die Vorteile von Faserverbundmaterialien zu nutzen. So können durch Ausnutzung ihrer hohen spezifischen Festigkeit und Steifigkeit lasttragende und leichte Zellhüllen hergestellt werden. Zudem eröffnen sich durch direkt in die Bauteile integrierte Sensoren und Leiterbahnen neue Möglichkeiten der Zustandsüberwachung, beispielsweise um Schäden frühzeitig zu erkennen. Insgesamt wird mit dem Design angestrebt, Antriebsbatterien leichter und sicherer zu machen.

Durchführung einer Machbarkeitsstudie zur Entwicklung einer Erlebniswelt für umweltfreundliche '4D-Mobilität' in Städten

Zielsetzung und Anlass des Vorhabens: Das Projekt erkundet die Machbarkeit und legt Grundlagen für eine Erlebniswelt für städtische Mobilität der Zukunft: Kombination von Zufußgehen, Radfahren, nicht-motorisierter oder elektrisch motorisierter Stadtverkehrsmittel und ÖPNV. Im Fokus stehen umweltfreundliche Verkehrsmittel und Mobilitätshilfen in der Größenordnung 'zwischen Schuh und Auto'. Die Zahl und Vielfalt dieser steigt stetig und es wird erkundet, ob und wie an diese 4D-Fahrzeuge herangeführt werden kann. Entstehen soll ein Erlebnispark für städtische Mobilität der Zukunft mit Lernstrecken über Verkehrs- und Mobilitätsthemen wie umweltfreundliche Antriebe zum Gesundheits- und Klimaschutz, Digitalisierung und autonomes Fahren, Fahrzeug- und Fahrzeugteilung statt Auto-Privatbesitz, Aufkommen kleiner Elektrofahrzeuge (zur Umwelterziehung und Verbraucheraufklärung); Ausfahrung, also Erprobung von 4D-Fahrzeugen, Showrooms als Situationsräume (Präsentation von Fahrzeugen im Kontext einer städtischen Situation) sowie ein Forum für Vortragsveranstaltungen, Seminare, Debatten)

Teilvorhaben 8: Konzeption der Near-Net-Shape-Faserverbundfertigung^r+Impuls: MAREMO: Materialeffizienter Leichtbau für eine ressourceneffiziente Mobilität, Teilvorhaben 7: Ressourceneffiziente Materialbasis

Faser-Kunststoff-Verbunde gehören längst zu den etablierten Strukturwerkstoffen im Automobilbau. Gegenüber metallischen Bauweisen können mit Faserverbundbauweisen oft Vorteile hinsichtlich des Stoffleichtbaus, des Gestaltleichtbaus, der Ermüdungsfestigkeit, der Struktur- und Funktionsintegration sowie der Korrosionsbeständigkeit erreicht werden. Höchste Leichtbaugrade lassen sich mit dem Einsatz von kohlenstofffaserverstärkten Kunststoffen (CFK) erreichen, da diese Werkstoffgruppe höchste spezifische Festigkeiten und Steifigkeiten aufweist. Die damit erreichbaren Leichtbaugrade tragen unmittelbar zur Reduzierung des Kraftstoffverbrauchs und der CO2-Emission bei. Die von der EU-Kommission vorgegebene Reduzierung des CO2-Ausstoßes von heute 130 g/km auf 95 g/km in 2020 fördert somit den Trend hin zum Faserverbund-Leichtbau im Automobil. Die Herstellung von Kohlenstofffasern ist jedoch selbst erdöl-, kosten- und energieintensiv. Um dennoch über das gesamte Produktleben deutliche Vorteile hinsichtlich des Energie- und Ressourcenverbrauchs zu realisieren, werden folgende konstruktive und technologische Maßnahmen im Rahmen des BMBF-Verbundvorhabens MAREMO seriennah umgesetzt: 1. Konzeption und ressourcenfreundliche Herstellung von Recyclingfaser-Prepregs und Recyclingfaser-Pressmassen als Basismaterial für Leichtbau-Schalenstrukturen wie z. B. Karosseriestrukturen. 2. Entwicklung von Produktionsverfahren für das Positionieren und Fixieren von lokalen belastungsgerechten Kohlenstofffaserverstärkungen (Towpreg) auf dem Basismaterial; dadurch Bereitstellung von besonders materialeffizienten, vorimprägnierten Near-Net-Shape-Verbundhalbzeugen. 3. Realisierung einer repräsentativen hochbelasteten Automobilstruktur in neuartiger Faserverbund-Leichtbauweise auf Basis der neuartigen Near-Net-Shape-Verbundhalbzeuge; dadurch Einsparung von teuren und energieintensiven Kohlenstofffasern.

r+Impuls: MAREMO: Materialeffizienter Leichtbau für eine ressourceneffiziente Mobilität, Teilvorhaben 8: Konzeption der Near-Net-Shape-Faserverbundfertigung

Faser-Kunststoff-Verbunde gehören längst zu den etablierten Strukturwerkstoffen im Automobilbau. Gegenüber metallischen Bauweisen können mit Faserverbundbauweisen oft Vorteile hinsichtlich des Stoffleichtbaus, des Gestaltleichtbaus, der Ermüdungsfestigkeit, der Struktur- und Funktionsintegration sowie der Korrosionsbeständigkeit erreicht werden. Höchste Leichtbaugrade lassen sich mit dem Einsatz von kohlenstofffaserverstärkten Kunststoffen (CFK) erreichen, da diese Werkstoffgruppe höchste spezifische Festigkeiten und Steifigkeiten aufweist. Die damit erreichbaren Leichtbaugrade tragen unmittelbar zur Reduzierung des Kraftstoffverbrauchs und der CO2-Emission bei. Die von der EU-Kommission vorgegebene Reduzierung des CO2-Ausstoßes von heute 130 g/km auf 95 g/km in 2020 fördert somit den Trend hin zum Faserverbund-Leichtbau im Automobil. Die Herstellung von Kohlenstofffasern ist jedoch selbst erdöl-, kosten- und energieintensiv. Um dennoch über das gesamte Produktleben deutliche Vorteile hinsichtlich des Energie- und Ressourcenverbrauchs zu realisieren, werden folgende konstruktive und technologische Maßnahmen im Rahmen des BMBF-Verbundvorhabens MAREMO seriennah umgesetzt: 1. Konzeption und ressourcenfreundliche Herstellung von Recyclingfaser-Prepregs und Recyclingfaser-Pressmassen als Basismaterial für Leichtbau-Schalenstrukturen wie z. B. Karosseriestrukturen. 2. Entwicklung von Produktionsverfahren für das Positionieren und Fixieren von lokalen belastungsgerechten Kohlenstofffaserverstärkungen (Towpreg) auf dem Basismaterial; dadurch Bereitstellung von besonders materialeffizienten, vorimprägnierten Near-Net-Shape-Verbundhalbzeugen. 3. Realisierung einer repräsentativen hochbelasteten Automobilstruktur in neuartiger Faserverbund-Leichtbauweise auf Basis der neuartigen Near-Net-Shape-Verbundhalbzeuge; dadurch Einsparung von teuren und energieintensiven Kohlenstofffasern.

iMove: IKT-Plattform für intermodale e-Mobilitätsdienstleistungen unter Berücksichtigung der Auslastungen von Energienetzen und Verkehrsmitteln, Teilvorhaben: Tarife als Anreizsystem

Das Ziel des Verbundprojektes liegt in der Entwicklung einer IKT-Plattform, die eine zeitnahe, integrierte Optimierung des Gesamtsystems aus Nutzern, kommunalen und privaten E-Fahrzeugflotten, Verkehrs- und Lade- sowie Energieversorgungsinfrastruktur und Anreizsystemen erlaubt. Auf Basis der IKT-Plattform erfolgt die Entwicklung integrierter und vernetzter Steuerungssysteme für (E-) Flotten und individuelle Mobilitätsnachfrager. Es erfolgt ein Feldversuch mit über 300 Fahrzeugen zur Evaluation der entwickelten Planungs- und Steuerungsmethoden unter Einbindung der elektrifizierten car2go Fahrzeugflotte in Stuttgart. Als Ergebnis des Projektes profitieren Mobilitätsdienstleister und -nachfrager, Flotten- und Stromnetzbetreiber sowie Energieversorgungsunternehmen von einer Gesamtsystemprognose sowie verbesserten Routing- und Anreizsystemen zur Auslastungsoptimierung des Verkehrs- und Energieversorgungssystems sowie einer im Sinne des Gesamtsystems optimierten Flottensteuerung und von nutzer- und situationsspezifischen Geschäftsmodellen zur Energie- und Mobilitätsbereitstellung. Die Stadtwerke Stuttgart übernehmen im Projekt folgende Aufgaben: - Entwicklung von E-Mobility Tarifen im Rahmen der Gestaltung von Anreizsystemen - Untersuchung von Weiterentwicklungspotenzialen im Bereich Laden und Parken in halböffentlichen Raum - Batteriepuffer für Flottenlademanagement und Regelenergie.

Leichtbau NWModul - Leichtbau-Nockenwellenmodule aus hochfesten, faserverstärkten Kunststoffen mit integrierten Nockenwellenlagern, Teilvorhaben: Entwicklung und Abmusterung des LeichtbauNWModuls

Das Ziel des Forschungsprojektes ist die Entwicklung, Umsetzung und Prüfung eines monolithischen Leichtbau-Nockenwellenmoduls, welches wirtschaftlich herstellbar ist. Dabei sollen durch das Leichtbau-Nockenwellenmodul eine Gewichtseinsparung von bis zu einem Kilogramm, ein verbessertes Akustikverhalten, eine kostengünstige Herstellbarkeit beim Zulieferer sowie die Integration des Moduls in das Gesamtfahrzeug beim OEM erreicht werden. Die Ausgangsbasis stellt ein aus wirtschaftlicher und technischer Sicht optimaler Hochleistungskunststoff dar. Aufbauend erfolgt die werkstoffgerechte Gestaltung und durch Simulationsrechnungen unterstütze Auslegung und Absicherung eines Demonstrators. Im Rahmen der integrierten Prozessgestaltung wird die fertigungstechnische Darstellung des Moduls am Beispiel der Abmusterung untersucht. So kann ein deutlich leichteres, ressourceneffizientes und kostenoptimales Leichtbau-Nockenwellenmodul umgesetzt werden. Die Projektergebnisse münden in die Darstellung, Montage und Prüfung eines entsprechend entwickelten Demonstrators.

1 2 3 4 59 10 11