API src

Found 951 results.

Similar terms

s/umweltgefährdungspotenzial/Umweltgefährdungspotential/gi

Gefährdungspotenzial Überschwemmung durch Starkregen

Gefährdungspotenzial durch Starkregen Für die Landeshauptstadt Dresden wurde ein Klimaanpassungskonzept erarbeitet, dass die Klimaveränderungen und dessen Folgen in Dresden aufzeigt. In diesem Rahmen wurden Gefährdungsanalysen für die Dresdner Stadtteile erstellt. Das Gefährdungspotenzial ergibt sich aus der Sensitivität eines Systems bezüglich der Klimaveränderung und der Exposition (Lage im Stadtraum). Für die Analyse standen die menschliche Gesundheit, Gebäude und Infrastruktur im Fokus. Gefährdungspotenziale wurden für die Themen Wärmebelastung sowie die Überschwemmungsgefahr durch Starkregen und Flusshochwasser untersucht ¿ hier Starkregen. In die Analyse flossen die mithilfe einer hydrodynamischen Modellierung ausgewiesenen potenziell überfluteten Flächen bei Starkregen ein. Außerdem wurden die Flächen kritischer und nicht-kritischer Flächennutzung einbezogen. Ausschlaggebend für das Gefährdungspotenzial ist der absolute Flächenanteil der überschwemmten Gebiete sowie deren relativer Anteil an der Gesamtfläche des Stadtteils. Damit wird vermieden, dass flächengroße Stadtteile überrepräsentiert werden. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung bewerten und die Maßnahmenentwicklung und -umsetzung priorisieren zu können. Weitere Informationen zur Gefährdungsanalyse und möglichen Anpassungsoptionen sind dem Klimaanpassungskonzept zu entnehmen. Die Gefährdungsanalyse wurde im Rahmen der Erstellung des Klimaanpassungskonzeptes vom Thüringer Institut für Nachhaltigkeit und Klimaschutz (ThINK) durchgeführt. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung in den verschiedenen Bereichen bewerten zu können. Mit Hilfe der Analyse kann die Maßnahmenentwicklung und -umsetzung priorisiert werden.

Gefahrenhinweiskarte Sachsen (Atlas der Hochwassergefährdung in Sachsen)

Die Gefahrenhinweiskarte zeigt Überschwemmungsflächen und Intensitäten (Wassertiefe bzw. spezifischer Abfluss) bei Extremhochwasser für den Elbestrom und die Gewässer I. Ordnung in Sachsen in einem Überblicksmaßstab (1:100.000) mit einem Datenstand von 2004. Als Extremhochwasser (EHQ) wird dabei ein Ereignis, das bedeutend größer als HQ(100) ist, mindestens das höchste beobachtete Ereignis, im Allgemeinen jedoch HQ(300), angesetzt. Die Berechnung der Überschwemmungsflächen erfolgte ohne die Berücksichtigung der Wirkung vorhandener Hochwasserschutzeinrichtungen, wie Talsperren, Deiche oder Polder. Die dargestellten Intensitäten und Ausdehnungen stellen eine Umhüllende aller möglichen Überschwemmungsszenarien dar, d.h., nicht alle dargestellten Flächen sind bei einem einzelnen Ereignis betroffen. Dies gilt auch bei einem Versagen von Schutzeinrichtungen. Darüber hinaus werden die Grenzen der überschwemmten Flächen bei HQ(20) und HQ(100) dargestellt, ebenfalls ohne die Berücksichtigung der Wirkung von Hochwasserschutzeinrichtungen. Aufgrund der verschiedenen Überflutungs- und damit Schadensprozesse wurde zwischen flachen Talbereichen (geschiebefrei, meist nicht Lauf verändernde Überflutung) und Steilbereichen (dynamische Überschwemmung mit Geschiebetransport, Erosion und zu erwartender Laufveränderung) unterschieden. Da an den steilen Gewässerabschnitten die Überschwemmungstiefe nur indirekt eine Aussage über die Intensität und damit über die Gefährdung geben kann, wurde zusätzlich die Fließgeschwindigkeit auf den Vorländern ermittelt. Das Produkt aus Überschwemmungstiefe und Fließgeschwindigkeit wird als spezifischer Abfluss (Abfluss pro Meter Gewässerbreite) für EHQ dargestellt.

Gefahrenhinweiskarte Sachsen (Atlas der Hochwassergefährdung in Sachsen)

Die Gefahrenhinweiskarte zeigt Überschwemmungsflächen und Intensitäten (Wassertiefe bzw. spezifischer Abfluss) bei Extremhochwasser für den Elbestrom und die Gewässer I. Ordnung in Sachsen in einem Überblicksmaßstab (1:100.000) mit einem Datenstand von 2004. Als Extremhochwasser (EHQ) wird dabei ein Ereignis, das bedeutend größer als HQ(100) ist, mindestens das höchste beobachtete Ereignis, im Allgemeinen jedoch HQ(300), angesetzt. Die Berechnung der Überschwemmungsflächen erfolgte ohne die Berücksichtigung der Wirkung vorhandener Hochwasserschutzeinrichtungen, wie Talsperren, Deiche oder Polder. Die dargestellten Intensitäten und Ausdehnungen stellen eine Umhüllende aller möglichen Überschwemmungsszenarien dar, d.h., nicht alle dargestellten Flächen sind bei einem einzelnen Ereignis betroffen. Dies gilt auch bei einem Versagen von Schutzeinrichtungen. Darüber hinaus werden die Grenzen der überschwemmten Flächen bei HQ(20) und HQ(100) dargestellt, ebenfalls ohne die Berücksichtigung der Wirkung von Hochwasserschutzeinrichtungen. Aufgrund der verschiedenen Überflutungs- und damit Schadensprozesse wurde zwischen flachen Talbereichen (geschiebefrei, meist nicht Lauf verändernde Überflutung) und Steilbereichen (dynamische Überschwemmung mit Geschiebetransport, Erosion und zu erwartender Laufveränderung) unterschieden. Da an den steilen Gewässerabschnitten die Überschwemmungstiefe nur indirekt eine Aussage über die Intensität und damit über die Gefährdung geben kann, wurde zusätzlich die Fließgeschwindigkeit auf den Vorländern ermittelt. Das Produkt aus Überschwemmungstiefe und Fließgeschwindigkeit wird als spezifischer Abfluss (Abfluss pro Meter Gewässerbreite) für EHQ dargestellt.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Umwelt - und Fauna-Flora-Habitat-Verträglichkeit im Rahmen des Genehmigungsverfahrens nach Paragraph 7 Abs. 3 des Atomgesetzes zum Abbau des Versuchskernkraftwerks AVR in Jülich

Das Öko-Institut wurde vom Ministerium für Wirtschaft, Mittelstand und Energie des Landes Nordrhein-Westfalen mit der Begutachtung der Umweltverträglichkeit und der Fauna-Flora-Habitat-Verträglichkeit für den Rückbau des Versuchskernkraftwerks AVR in Jülich beauftragt. Das Gutachten des Öko-Instituts soll der Genehmigungsbehörde gemäß Paragraph 1a AtVfV die Beurteilung ermöglichen, ob durch den Abbau des AVR bedeutsame Auswirkungen auf die Schutzgüter Menschen, Tiere, Pflanzen, Boden, Wasser, Luft, Klima, Landschaft, Kulturgüter und sonstige Sachgüter sowie Wechselwirkungen zwischen den vorgenannten Schutzgütern zu besorgen sind.

Schadschwelle 4.0: Künstliche Intelligenz für die Behandlung von Unkräutern unter Berücksichtigung des ökologischen Wertes, Teilprojekt C

Statistik der Anlagen zum Umgang mit wassergefährdenden Stoffen

Erhebung über Anlagen zum Umgang mit Wasse rgefährdenden Stoffen, die im Hinblick auf gesetzlich vorgesehene Überwachungsmaßnahmen besonders erfasst sind. Erhebungsmerkmale: Art der Anlage; Bauart, Baujahr, Material und Fassungsvermögen der Anlage; Gefährdungsstufe; Wassergefährdungsklasse; Art des wassergefährdenden Stoffes; Wirtschaftszweig des Betreibers.

Ressortforschungsplan 2023, Untersuchungen zu forschungsreaktorspezifischen Ereignislisten

Schädigungs- und Zustandsanalyse defekter Hochvoltbatterien, Schädigungs- und Zustandsanalyse defekter Hochvoltbatterien

Intergration von hydrologischen, hydrogeologischen, bodenphysikalischen und hydrodynamischen Prozessen durch partikelbasierte Simulation

Eine integrierte Hydrosystemmodellierung ist aufgrund verschiedener räumlicher und zeitlicher Skalen sowie der Komplexitätsstufen der beteiligten Prozesse herausfordernd. Dennoch erfordern viele hydrologische Fragestellungen eine ganzheitliche Betrachtung durch eine fundierte Prozessbeschreibung mit einer Umsetzung in Modellkonzepte. Zu diesen Fragestellungen zählen beispielsweise Risikoanalysen und Modellierungen von Sturzfluten, die sowohl hydrologische als auch hydrodynamische Prozesse beinhaltet. Das Ziel des Projekts ist die integrierte Berücksichtigung von hydrologischen, hydrogeologischen, bodenphysikalischen und hydrodynamischen Prozessen innerhalb eines einzigen Modells. Dieser neuartige Modelltyp basiert auf der numerischen Interpolationsmethodik SPH (smoothed particle hydrodynamics) in Verbindung mit innovativen Skalierungsmethoden. Im Gegensatz zu etablierten Euler basierten Methoden erfolgt die zeitliche Integration über die dynamischen Partikel und nicht über ein starres Gitter. Für hydrodynamische Fragestellungen wird die SPH Methode bereits eingesetzt, eine Einbeziehung von hydrologischen, hydrogeologischen oder bodenphysikalischen Prozessen erfolgte bisher jedoch nicht, obwohl die Methodik aufgrund der numerischen Stabilität und flexiblen Erweiterbarkeit das Potential dazu besitzt. Die Umsetzung der Prozessbeschreibungen erfolgt durch die GPU-CUDA Technik für Nvidia Grafikkarten. Die innovative dynamische Skalierung ermöglicht die Übertragbarkeit von Prozessen der Wasserbewegung auf reale hydrologische Einzugsgebiete. Diese Skalierung basiert auf Ähnlichkeits-Konzepten aus der Bodenphysik. Daten zu den Böden und der Vegetation werden in Eigenschaftsfeldern bereitgestellt, wobei die einzelnen Parameter durch Verteilungsfunktionen beschrieben werden. Die Zuordnung der Parameter zu den Partikeln durch multiple Wahrscheinlichkeiten erfolgt in Analogie zu den Variationen in natürlichen Systemen. Die Dichte und Geschwindigkeit der Partikel werden über die Eigenschaftsfelder beeinflusst, während die Partikeleigenschaften die dynamische Skalierung vorgeben. Meilenstein 1 ist ein voll funktionsfähiges Modellsystem mit einer detaillierten Prozessbeschreibung auf der Plot Skala. Berücksichtigt werden die Interaktionen des Wassers mit der Vegetationszone, der ungesättigten und gesättigten Zone. Meilenstein 2 ist auf den Transfer des Detailmodells auf größere Skalen ausgerichtet (Skalierung). Meilenstein 3 umfasst die erfolgreiche Anwendung des Modells auf der Einzugsgebietsskala samt Validierung anhand umfangreicher Beobachtungsdaten (Hühnerwasser). Nach der Validierung wird das integrierte Modellsystem für Anwendungen mit hohen Wechselwirkungen zwischen verschiedenen Prozessskalen eingesetzt. Das Ziel ist die Bereitstellung einer zuverlässigen und realistischen Grundlage in Bereichen wie Sturzfluten oder Bewässerung, um Schadenpotentiale oder den Bewässerungsbedarf zu beurteilen.

1 2 3 4 594 95 96