The final goal of the EUROWET project is to integrate the substantial multidisciplinary European research in wetlands to help attain the sustainable management of the water cycle. This will be achieved by the translation of state-of-the art science developed at both national and European levels, into practical guidance for end-users. This will be achieved by a comprehensive review, expert assessment and a focussed dissemination strategy. There is considerable scientific knowledge and technical experience gained in diverse aspects of wetland science and management including hydrology, biogeochemistry, ecology restoration, socio-economic and policy analysis. However the results of research and management experience are still too fragmentary and not sufficiently orientated to problem-solving or simply inadequately framed to be effectively transferred to, or used by, stakeholders and policy-makers. Simultaneously the general outcome of the scientific research has been increased awareness of the significance of wetlands in delivering goods and services important for human welfare including quality of life, biodiversity conservation and maintenance or enhancement of environment quality. Despite this wetlands continue to be degraded and lost throughout Europe without adequate consideration of the wider benefits to be achieved from this management. The new Water Framework Directive (WFD) promotes a unique opportunity to redress this problem by means of the holistic, integrated approach to water management. There is currently in preparation horizontal guidance on Wetlands as part of the Common Implementation Strategy (CIS) process. There is however work still to be done on providing more specific scientific and technical guidance on the effective implementation of the Directive with respect to wetlands. This is particularly the case in relation to Integrated River Management, the CIS cluster within which wetlands are being considered in the WFD.
Seit dem 8. Januar 2003 ist die TU Dresden in das EMAS-Verzeichnis bei der IHK Dresden eingetragen und somit die erste technische Universität mit einem validierten Umweltmanagementsystem nach EMAS (Registrierungsurkunde). Die Validierung ist insbesondere auf den erfolgreichen Abschluss des Projektes 'Multiplikatorwirkung und Implementierung des Öko-Audits nach EMAS II in Hochschuleinrichtungen am Beispiel der TU Dresden' zurückzuführen. Mit der Implementierung eines Umweltmanagementsystems ist zwar ein erster Schritt getan, jedoch besteht die Hauptarbeit für die TU Dresden nun, das geschaffene System zu erhalten und weiterzuentwickeln. Für diese Aufgabe wurde ein Umweltmanagementbeauftragter von der Universitätsleitung bestimmt. Dieser ist in der Gruppe Umweltschutz des Dezernates Technik angesiedelt und wird durch eine Umweltkoordinatorin, den Arbeitskreis Öko-Audit, die Arbeitsgruppe Öko-Audit und die Kommission Umwelt, deren Vorsitzende Frau Prof.Dr. Edeltraud Günther ist, tatkräftig unterstützt. Die Professur Betriebliche Umweltökonomie arbeitet in dem Arbeitskreis und der Arbeitsgruppe Öko-Audit mit und steht dem Umweltmanagementbeauftragten jederzeit für fachliche Beratung zum Umweltmanagement zur Verfügung. Ein wesentlicher Erfolg der TU Dresden auf dem Weg zu einer umweltbewussten Universität ist die Aufnahme in die Umweltallianz Sachsen, die am 08. Juli 2003 stattgefunden hat. Informationen zum Umweltmanagementsystem der TU Dresden sind unter 'http://www.tu-dresden.de/emas' zu finden.
The project aims at supporting the implementation of the proposed Directive of the European Parliament and of the Council on the management of waste from the extractive industries 2003/0107. The Directive was prepared following several major accidents with a serious impact on the environment, and it has the purpose of ensuring a safer management of the mining waste facilities, so that such accidents will not occur in the future. This project addresses particularly Article 9, which provides for the classification of waste facilities with respect to the possible consequences of an accident, and respectively the Annex II: Characterisation of mining waste and Annex III: Criteria for the classification of waste facilities. The activities of the project are divided into four major work packages as follows: - Preparation of a Methodology for the Characterisation of Mining Waste - Elaboration of a Risk Assessment Methodology for the Classification of Mining Waste Facilities, including Old/Abandoned Mining Waste Facilities - Review of Techniques for the Prevention and Abatement of Pollution Generated by Mining Wastes - Development of a Decision Support Tool for Minimising the Impact of the Mining Industry on the Environment. The Consortium co-ordinated by BIUTEC, Austria, includes universities, research institutes, NGOs and implementing authorities from 8 European countries, both Members of the EU and accession countries. The experts team is highly qualified and has many years of experience and research in this area, so that the best outputs can be obtained. The project will build on the results of other projects carried out in this field, and will relate closely to on-going projects, so that there is no overlap in our activities. In order to provide an effective tool for the potential beneficiaries, the project team will consult with representatives of the stakeholders before the final versions of the outputs are publicly made available on the project web-site.
The working documents on revision of the Sewage Sludge Directive (86/278/EEC) on Biowaste and the Soil Protection Communication call for standards on sampling and analysis of sludge, treated biowastes and soils. The European Directives are intended to prevent unacceptable release of contaminants, impairment of soil function, or exposure to pathogens, and to protect crops, human and animal health, the quality of water and the wider environment when sludges and treated biowastes are used on land. The EU animal by-product regulations are fixing microbiological threshold values, for which microbiological methods of analysis are needed. The European Commission wishes to cite European (CEN) standards in order that there is harmonised application of the directives and that reports from Member States (MS) can be compared. This project to develop standards for hygienic parameters in sludge, soil and biowaste, presented under the name 'HORIZONTAL-HYG', will be carried out under the umbrella of the main project HORIZONTAL 'Development of horizontal standards for soil, sludge and biowaste'. This ensures full integration in the CEN system through BT Task Force 151 specially set up in support of this project as well as direct supervision by DG ENV and MS, which form the Steering Committee of HORIZONTAL. Preparation of HORIZONTAL-HYG was taken in a full agreement with the DG ENV, DG JRC and the MS already contributing to HORIZONTAL. HORIZONTAL-HYG's objective is to produce standardised methods for sampling and hygienic microbiological parameters, as Salmonella spp, Escherichia coli, Clostridium perfringens, Ascaris ova in sludges, treated biowastes and soils written in CEN format. Validation of the methods is an essential part of the development as it quantifies performance in terms of repeatability and reproducibility. The consortium is well connected in CEN and ISO and thus provides an excellent basis for implementation of the deliverables. Prime Contractor: Energieonderzoek Centrum Nederland; Petten, Netherlands.
Article 16 of the Water Framework Directive (WFD, Directive 2000/60/EC) lays down the Community Strategy for the establishment of harmonised quality standards and emission controls for the priority substances and other substances posing a significant risk to, or via, the aquatic environment. In order to achieve the protection objectives of the WFD, the Commission shall (i) submit proposals for quality standards applicable to the concentrations of the priority substances in surface water, sediment or biota, and (ii) identify the appropriate cost-effective and proportionate level and combination of product and process controls for both point and diffuse sources. Proposals for environmental quality standards and emission controls for point sources shall be submitted within 2 years of the inclusion of the substance concerned on the list of priority substances (European Parliament and Council Decision No. 2455/2001/EC), i.e. in December 2003. This study is part of the preparatory work of the Commission and its overall objectives are: - The development and description of a concept which enables the European Commission to submit proposals for quality standards applicable to the concentrations of the priority substances of the Water Framework Directive (2000/60/EC) and those substances not on the priority list but regulated in the 'daughter directives' of Directive 76/464/EEC (on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community) in water, sediment and biota, as required by Articles 16(7) and 16(10) of the Water Framework Directive. - Elaboration of proposals for quality standards for the priority substances of the Water Framework Directive and recommended values for other substances of concern (see footnote 1) with regard to surface water, sediment, biota, and human health as objectives of protection. Conclusions: The elaboration of quality standards with the developed methodological framework clearly showed that the proposed approach is applicable for the derivation of specific quality standards addressing the particular objectives of protection as well as for the identification of the overall quality standard that finally may be imposed to safeguard the entire set of objectives of protection. Also, with regard to the effort required to work with the concept, it can be considered as economic. This is attributable to the fact that despite the comprehensive consideration of all relevant routes of exposure and objectives of protection the different quality standards for the specific objectives are normally only derived if certain pre-defined trigger values are exceeded. This avoids the assessment of irrelevant exposure routes and the calculation of unnecessary standards. Problems encountered during the elaboration of the standards were in general not attributable to the suggested methodological framework but mostly to the limited availability of data or to the limitations of the available data.
Das Aktionsprogramm 'Umwelt und Gesundheit' sieht als wichtige Teilaufgabe vor, dem wachsenden Informationsbeduerfnis der Bevoelkerung und der Fachoeffentlichkeit nach zuverlaessiger und verstaendlicher Information ueber die Wirkung von Umweltbelastungen und Produkten auf die Gesundheit nachzukommen. Auf der Basis wissenschaftlicher Erkenntnisse wurden in der Vergangenheit fuer die Schutzbereiche Umwelt und/oder Gesundheit zahlreiche Regelungen und Verbote erlassen. Fuer die unterschiedliche Vollzugsaufgaben wurden spezifische Datensammlungen auf elektronischer Plattform erstellt, die aufgrund der Art und Darstellung der fachlichen Inhalte aber eher die Fachoeffentlichkeit ansprechen als die allgemeine Oeffentlichkeit. Zur Foerderung der Transparenz gegenueber der Oeffentlichkeit ist es notwendig, fuer definierte Chemikalien und Produkte eine allgemein verstaendliche Zusammenfassung des zur Beurteilung notwendigen Kenntnisstandes zusammen zu tragen und auf elektronischem Weg verfuegbar zu machen. Ein erster Teilschritt in diese Richtung wurde 1999 im BMG durch die Einrichtung des 'Chemikalieninformationssystem fuer verbraucherrelevante Stoffe (CIVS)', das im Internet verfuegbar ist, vollzogen. CIVS geht dabei von den Regelungen des Chemikaliengesetzes fuer den gesundheitlichen Verbraucherschutz aus. Eine Erweiterung auf die Belange des Umweltschutzes und auf andere Gesetze und Verordnungen ist dringend erforderlich. Im Rahmen einer Machbarkeitsstudie sind die konzeptionellen Grundlagen fuer die Schaffung eines auf die Informationsbeduerfnisse der allgemeinen Oeffentlichkeit zugeschnittenen Umwelt- und Gesundheitsinformationssystems zu erarbeiten, die Wege fuer die geeignete Umsetzung und Einbindung vorhandener Informationen aus Datenbestaenden anderer Institutionen (UBA, RKI, BfS, Laender u.a. ) aufzuzeigen und Vorschlaege fuer die Darstellung im Internet zu machen. In Abstimmung mit Verbraucherschutz- und Umweltschutzverbaenden ist ein Anforderungskatalog auszuarbeiten, der die erforderlichen Informationen aus dem Bereich Umwelt und Gesundheit aus der Sicht der Oeffentlichkeit beruecksichtigt.
Many current water-related RTD projects have already established operational links with practitioners, in several catchments / river basins, which allow the needs of policymakers to be taken into account. However, experience has shown that this interrelationship is not as efficient as it could / should be. Often, RTD results are not easily available to policy oriented implementer (policymakers) and, vice versa, research scientists may lack insight in the needs of policymakers. This project proposes a number of concrete actions to bridge these gaps in communication by developing and implementing a science-policy interface, focusing on setting up a mechanism to enhance the use of RTD results in the Water Framework Directive (WFD) implementation. As a first action, existing science-policy links will be investigated. RTD and LIFE projects that are of direct relevance for the implementation of the WFD will be identified and analysed. The results of these projects will be extracted, translated and synthesised in a way that can efficiently feed the WFD implementation. Secondly, an information system (WISE-RTD Web Portal) will be further developed to cater for an efficient and easy to use tool for dissemination as well as retrieval of RTD results. The Web Portal will be tested in 4 selected river basins to better tune the product to the needs of WFD stakeholders, policymakers and scientists. In parallel, the Web Portal will be disseminated to WFD stakeholders. This dissemination will focus on how to better access and use the RTD results and practical experiences. As third action, this science-policy interfacing of WFD related topics will be extended to non-EU countries taking into account their specific needs. An assessment of recent practices and needs of non-EU countries, together with an in-depth analysis of the operational needs in two Mediterranean pilot river basins, will allow to prepare recommendations for an efficient transfer of knowledge. Prime Contactor; Hydroscan NV; Leuven; Belgium.
FOOTPRINT aims at developing a suite of three pesticide risk prediction and management tools, for use by three different end-user communities: farmers and extension advisors at the farm scale, water managers at the catchment scale and policy makers/registration authorities at the national/EU scale. The tools will be based on state-of-the-art knowledge of processes, factors and landscape attributes influencing pesticide fate in the environment and will integrate innovative components which will allow users to: i) identify the dominant contamination pathways and sources of pesticide contamination in the landscape; ii) estimate pesticide concentrations in local groundwater resources and surface water abstraction sources; iii) make scientifically-based assessments of how the implementation of mitigation strategies will reduce pesticide contamination of adjacent water resources. The three tools will share the same overall philosophy and underlying science and will therefore provide a coherent and integrated solution to pesticide risk assessment and risk reduction from the scale of the farm to the EU scale. The predictive reliability and usability of the tools will be assessed through a substantial programme of piloting and evaluation tests at the field, farm, catchment and national scales. The tools developed within FOOTPRINT will allow stakeholders to make consistent and robust assessments of the risk of contamination to water bodies at a range of scales relevant to management, mitigation and regulation (farm, catchment and national/EU). They will in particular i) allow pesticide users to assess whether their pesticide practices ensure the protection of local water bodies and, ii) provide site-specific mitigation recommendations. The FOOTPRINT tools are expected to make a direct contribution to the revision of the Directive 91/414/EC, the implementation of the Water Framework Directive and the future Thematic Strategy on the Sustainable Use of Pesticides. Prime Contractor: Bureau de Recherches Géologiques et Minières; Paris; France.
CULT-STRAT will establish a scientific reference for developing strategies for policy and decision-makers on European and national levels within the CAFE Programme and for heritage managers for strategic decisions at local level. It will do this through a choice of material indicators and pollution threshold levels based on best available scientific data including deterioration models, spatial distribution and mapping of pollutants and of stock of materials at risk, cost estimates, comparison studies off different conservation approaches. Damage caused to objects of cultural heritage belongs to the most serious among the detrimental effects of anthropogenic air pollutants as it endangers a vital part of the European identity. There is therefore an urgent need to include the impact of pollutants on cultural heritage alongside the human health and parts of the ecosystem that are already concerned in the EU Directives on urban air quality. This is especially relevant for the CAFE (Clean Air for Europe) programme of the Commission and the Community interventions through the 'Culture 2000' framework programme and the structural funds. The overall aim is to identify material indicators and threshold levels of pollutants to be used for development of strategies for sustainable maintenance and preventive conservation of European cultural heritage and air quality policy to reduce damage. The models will permit ranking of the effects of pollutants on corrosion and soiling of materials. The air pollution models will be related to local fluxes, including indoor concentrations. The stock of cultural heritage materials at risk in selected areas (Paris, Rome, Florence, Prague, Madrid, and Berlin) will be used for assessment and mapping of areas where cultural heritage objects are endangered. Prime Contractor: Korrosionsinstitutet Sci AB, R&D Department Atmospheric Corrosion, Stockholm SE.
The adoption of the Urban Waste Water Treatment Directive 91/271/EEC imposes the sewage sludge to be subsequently treated so it is expected by 2005 to increase twofold in comparison whit 1992. However, classical incineration to treat this vast amount of sludge must be no longer accepted from an environmental point of view. In addition, the Sewage Sludge Directive 86/278/EEC regulates the uses and properties of stabilised sludge for being either recycled or disposed. Both directives drive specific actions in two complementary ways. Firstly, a deep knowledge of current sludge treatment, such as mesophilic, thermophilic or autothermophilic processes, must be promoted to solve that problem in the UE ambit, taking in account the particular considerations of each treatment facility. In second place, the development of new processes must be supported to open new alternatives that could valorise that waste.The proposal aims at developing strategies for the disposal and reuse of waste sludge. The scope envisages to develop several processes for reducing both amount and toxicity of sludge, with simultaneous transformation into green energy vectors such as methane or hydrogen. In outline, mesophilic and mainly thermophilic and autothermophilic conditions will be deeply explored as classical alternatives for sludge stabilisation, assuring sanitary conditions of the treated sludge. Also, valuable materials will be obtained from sludge, such as activated carbons, which will be used in conventional adsorption processes and in innovative advanced oxidation processes.The main outcomes expected at the end of the projects are guidelines for technology selection in agreement with the geographic, economic and technical characteristics of the sewage plants, demonstration of the feasibility of new applications for the sewage sludge, manufacturing of activated carbon from sludge sewage as innovative recycling of sludge waste, and a deep understanding of the methods involved. Prime Contractor: Universitat Rovira i Virgili, Tarragona, Spain.
| Origin | Count |
|---|---|
| Bund | 23 |
| Type | Count |
|---|---|
| Förderprogramm | 23 |
| License | Count |
|---|---|
| offen | 23 |
| Language | Count |
|---|---|
| Deutsch | 6 |
| Englisch | 19 |
| Resource type | Count |
|---|---|
| Keine | 17 |
| Webseite | 6 |
| Topic | Count |
|---|---|
| Boden | 21 |
| Lebewesen und Lebensräume | 18 |
| Luft | 17 |
| Mensch und Umwelt | 23 |
| Wasser | 19 |
| Weitere | 23 |