WebMapService (WMS) mit den Probestellen aus der Trinkwasserdatenbank ZTEIS in Hamburg. Der WMS-Dienst unterliegt Datenschutzrechtlichen Bestimmungen und ist ausschließlich für die Visualisierung im Trinkwasserportal. In der Trinkwasserdatenbank ZTEIS (zentrales Trinkwassererfassungs- und Informationssystem) werden Untersuchungsergebnisse gesammelt, die vom Trinkwasserlabor der Hamburger Wasserwerke nach § 14 Trinkwasserverordnung (TrinkwV) und vom Institut für Hygiene und Umwelt nach § 19 TrinkwV durchgeführt werden. Die Untersuchungen erfolgen im Rahmen der Umsetzung der Trinkwasserverordnung und und stammen sowohl aus den Wasserwerken, wie auch aus dem Leitungsnetz. Der Behörde für Gesundheit und Verbraucherschutz (BGV) obliegt die Überprüfung der öffentlichen Wasserversorgung. Die Datenbank hat primär den Zweck, die Berichterstattung gemäß § 21 TrinkwV zu gewährleisten. Seit 2003 werden in der Trinkwasserdatenbank ca. 24.000 Proben mit ca. 1,2 Mio. Untersuchungsergebnissen (Stand Februar 2014) gespeichert. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Die Schweizerische Vogelwarte Sempach hat mit dem Lebensrauminventar (LRI) eine Methode entwickelt, mit der grosse Landschaftsraeume in relativ kurzer Zeit beschrieben und bewertet werden koennen. Mit Hilfe von Formularblaettern werden alle naturnahen Lebensraeume im Feld beschrieben. Wichtigste Kriterien sind die Struktur, teilweise auch die dominanten Pflanzenarten. Die Methode ist auf das Kulturland ausgerichtet, laesst sich aber auch im Siedlungsgebiet anwenden. Seit 1967 setzt die Vogelwarte die LRI-Methode in allen angewandten Projekten ein. Es entstand so eine Datenbank mit 69000 Lebensraeumen auf rund 1400 km2. Urspruenglich wurde das LRI fuer die Raumplanung im Kanton Luzern entwickelt. Sie hat sich aber auch bei Umweltvertraeglichkeitspruefungen, fuer das Erarbeiten von Landschaftsentwicklungskonzepten oder zur Beschreibung von Lebensraeumen von Tieren (Feldhase, Voegel) bewaehrt. Da immer dieselbe Methode angewandt wird, koennen verschiedenen Landschaften miteinander verglichen werden. Zweitkartierungen im Kanton Luzern zeigen die Veraenderungen der Landschaft innerhalb des letzten Jahrzehntes.
Halle (Saale), 12.03.2025 Feinstaubbelastung: Die Präsidentin Sonniges Frühlingswetter mit Schattenseite Die Feinstaubkonzentration in der Luft ist deutlich erhöht. Das registrieren die Messstationen des Lufthygienischen Überwachungssystems Sachsen-Anhalt (LÜSA) dieser Tage flächendeckend im gesamten Bundesland. Ursache ist ein seit Anfang März angereichertes und täglich steigendes Feinstaubbelastungsniveau in ganz Deutschland. Verursacht wird dies durch eine langanhaltende Hochdruckwetterlage mit eingeschränkten Luftaustauschbedingungen, schwachem Wind und Temperaturinversionen, bei denen kühlere Luft am Boden durch wärmere Luftschichten überlagert wird. Kaum Auswirkung auf die Luftbelastung hat hingegen Saharastaub, der in letzter Zeit zu milchig-weißem Himmel geführt hatte. Sein Einfluss beschränkte sich laut Deutschem Wetterdienst (DWD) auf höhere Atmosphärenschichten und war nicht primär für die Feinstaubbelastung in Bodennähe verantwortlich. Tagesgrenzwert überschritten Vom 8. bis 11. März wurde an vier Tagen in Folge der Tagesgrenzwert von 50 Mikrogramm Feinstaub pro Kubikmeter Luft überschritten. Zum Wochenbeginn waren 20 von 23 Messorten in Sachsen-Anhalt betroffen, am Dienstag noch 19 Stationen. Die höchsten Konzentrationen traten in Halle, Bernburg, Magdeburg, Dessau-Roßlau und Wittenberg auf, aber auch die Waldmessstation Zartau in der westlichen Altmark dokumentiert am 10. März 55 Mikrogramm pro Kubikmeter. Pro Jahr sind maximal 35 Pressemitteilung Nr.: 03/2025 vzp@ lau.mwu.sachsen-anhalt.de Überschreitungstage pro Messstation zulässig. Keine Überschreitungen Landesamt für Umweltschutz 06116 Halle (Saale) gab es dieser Tage an den Harzstationen Wernigerode/Bahnhof und Unterharz/Friedrichbrunn. Tel.: 0345 5704-101 Fax: 0345 5704-190 Web: lau.sachsen-anhalt.de 1 Wetterwechsel bringt Entspannung Der Wetterwechsel bringt mit zunehmendem Tiefdruckeinflusses Kaltluft und Niederschläge nach Sachsen-Anhalt, sodass sich die Situation schon heute erheblich entspannen wird. Auswirkungen von Feinstaub Feinstaub belastet Atemwege, Kreislauf, Stoffwechsel und Nervensystem. Kinder, Menschen mit vorgeschädigten Atemwegen und ältere Personen reagieren besonders empfindlich – zum Beispiel mit vermehrten Asthmaanfällen. Aktuelle Informationen zur Luftqualität in Sachsen-Anhalt gibt es stündlich aktuell bei: • Umweltportal Sachsen-Anhalt (https://umwelt.sachsen- anhalt.de/luesa) •mdr Videotext-Tafeln 524-526 •oder mit der LÜSA-APP direkt auf das Mobiltelefon. Höchste Feinstaubkonzentrationen (Tagesmittelwert) in Sachsen-Anhalt in der Zeit vom 8. bis 11. März 2025 StandortHöchster Tagesmittelwert Feinstaub (PM 10 ) Luftmessstationin Mikrogramm pro Kubikmeter Halle (Saale)90 µg/m³ am 10.03.2025 Wittenberg89 µg/m³ am 11.03.2025 Bernburg84 µg/m³ am 10.03.2025 Dessau-Roßlau82 µg/m³ am 11.03.2025 Magdeburg80 µg/m³ am 10.03.2025 Aschersleben73 µg/m³ am 11.03.2025 Bitterfeld-Wolfen72 µg/m³ am 11.03.2025 Leuna69 µg/m³ am 10.03.2025 Stendal68 µg/m³ am 10.03.2025 2 Tagesmittelwerte der Feinstaubkonzentration (Partikel PM 10 ) in Sachsen-Anhalt am 10. März 2025 3
Bodenkundliche Kennwerte, Nutzung und Bodengesellschaften. Raumbezug Block- und Blockteilflächen ISU5 (Informationssystem Stadt und Umwelt), 1 : 5.000, Stand 2020.
Wasserhaushaltsgrößen einschl. Eingangsparameter aus dem Modell ABIMO (Sachstand 2022) auf Grundlage der Karte Informationssystem Stadt und Umwelt (ISU5) - Raumbezug - 2020. Teil der Ergebnisse des Forschungsprojekts „AMAREX – Anpassung des Managements von Regenwasser an Extremereignisse“. "Verdunstung aus Niederschlägen" und "Versickerung aus Niederschlägen" werden getrennt dargestellt.
Wasserhaushaltsgröße "Verdunstung aus Niederschlägen" einschl. Eingangsparameter aus dem Modell ABIMO (Sachstand 2022) auf Grundlage der Karte Informationssystem Stadt und Umwelt (ISU5) - Raumbezug - 2020. Teil der Ergebnisse des Forschungsprojekts „AMAREX – Anpassung des Managements von Regenwasser an Extremereignisse“.
Wasserhaushaltsgröße "Versickerung aus Niederschlägen" einschl. Eingangsparameter aus dem Modell ABIMO (Sachstand 2022) auf Grundlage der Karte Informationssystem Stadt und Umwelt (ISU5) - Raumbezug - 2020. Teil der Ergebnisse des Forschungsprojekts „AMAREX – Anpassung des Managements von Regenwasser an Extremereignisse“.
Grünvolumenzahl pro Block- und Teilblockflächen ohne Gewässer sowie Straßenflächen auf Grundlage des Informationssystems Stadt und Umwelt (ISU5) - Raumbezug 2020. Die Grünvolumenzahl (GVZ) ist eine Größe aus der Landschaftsplanung und berechnet sich aus dem Grünvolumen [m³] pro Flächeneinheit [m²].
Die zwei Kartenthemen bestehen jeweils aus mehreren thematisch und räumlich unterschiedlichen Ebenen. Die Ebenen sind teilweise voneinander unabhängig aussagekräftig. Die Starkregenhinweiskarte basiert maßgeblich auf folgenden Produkten: Hinweiskarte Starkregen des Bundesamts für Kartographie und Geodäsie topografische Senkenanalyse der BWB, starkregenbedingte Feuerwehreinsätze der Berliner Feuerwehr für das Land Berlin. Die Hinweiskarte Starkregen wurde vom Bundesamt für Kartographie und Geodäsie (BKG) in Zusammenarbeit mit den Ländern für die gesamte Fläche Nord- und Ostdeutschlands (11 Bundesländer) im Zeitraum 2023/2025 erarbeitet. Für Berlin-Brandenburg wurde dies in einem Los durchgeführt. Die Karte zeigt die simulierten Überflutungsflächen und -tiefen sowie Fließgeschwindigkeiten /-richtungen für folgende Szenarien: außergewöhnliches Ereignis: 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 1 Stunde) mit einem Euler-Typ II Niederschlagsverteilung. extremes Ereignis: 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einem Blockregenverteilung. Grundlage hierfür sind diverse Geodaten des Bundes und der Länder, insbesondere ein hochaufgelöstes digitales Geländemodell sowie Daten zur Flächennutzung, wie zum Beispiel zur Bebauung. Die Ergebnisse basieren auf einer Modellierung der oberflächlich abfließenden Regenmenge, ähnlich dem Modell für die Starkregengefahrenkarte Berlins (siehe unten). Allerdings wurden die Versickerungsleistung des Untergrundes und das Kanalnetz nicht in die Berechnungen einbezogen und stellen somit eine erhebliche Vereinfachung dar (weitere Informationen finden sich hier ). Die topographische Senkenanalyse ist das Ergebnis einer Analyse des Digitalen Geländemodells (ATKIS® DGM – Digitales Geländemodell, 2021) unter Berücksichtigung der Gebäudeflächen und Durchfahrten sowie Geschossinformationen (ALKIS®- Amtliches Liegenschaftskatasterinformationssystem, 2021), welche durch die BWB im Jahr 2022 durchgeführt wurde. Es erfolgte eine GIS-Analyse zur Ermittlung der Senken, Fließwege und Abflussakkumulation basierend auf dem vorgeglätteten DGM. Die Gebäude wurden als nicht überströmbare Abflusshindernisse in das DGM integriert und Senken in umschlossenen Innenhöfen ausgeschlossen. Folgende Senkenattribute wurden basierend auf einer zonalen Statistik abgeleitet und werden in den Sachdaten dargestellt: Fläche Einzugsgebiet (DrainArea [m²]) Fläche Senke (FillArea [m²]) Maximale Tiefe der Senke (FillDepth [cm]) Geländehöhe Senkenbasis (BottomElev [m]) Geländehöhe maximaler Füllstand (FillElev [m]) Füllvolumen (FillVolume [m³]) Basierend auf folgenden Parametern wurden die relevanten Senken ermittelt: Senkentiefe mindestens 20 cm, Senkenfläche mindestens 4 m², Senkenvolumen mindestens 2 m³, Senkeneinzugsgebiet mindestens 200 m². Der Datensatz der Feuerwehreinsätze zeigt Meldungen der Berliner Feuerwehr in Bezug auf ,,Wasser”, welche anhand des Meldungstextes mit Starkregen in Verbindung zu bringen sind und an Starkregentagen aufgenommen wurden. Der Datensatz wurde durch die Berliner Feuerwehr erfasst und durch die BWB prozessiert (sogenannter Überflutungsatlas). Die BWB haben die Feuerwehreinsätze mit den Niederschlagsdaten der BWB an diesem Tag und Ort abgeglichen und ein anzunehmendes Wiederkehrintervall (T) des aufgetretenen Niederschlagsereignisses zugeordnet. Dopplungen wurden entfernt. Folgende Attribute wurden abgeleitet und werden in den Sachdaten dargestellt: Datum (angelegt) Wiederkehrintervall (T) Ortsteil Die Daten wurden räumlich über die Berliner Adressdatei geocodiert. Der Zeitraum der Meldungen umfasst einerseits den Zeitraum 2005 bis 2017 anderseits 2018 bis 2021. Diese Datensätze wurden zu einem Datensatz von 2005 bis September 2021 zusammengefasst. Zwecks Aggregierung und Darstellung wurden die Daten auf Blockteilflächen und Straßenflächen des Informationssystems Stadt und Umwelt (ISU5 2021) zusammengefasst und klassifiziert. In Berlin wird die Analyse zu Starkregengefahren auf Basis eines gekoppelten 1D-Kanalnetz und eines 2D-Oberflächenabflussmodells (1D/2D gekoppeltes Modell) durchgeführt. Bei diesem Verfahren wird die Berechnung der Abflussvorgänge im Kanalnetz (1D) mit der zweidimensionalen hydrodynamischen Modellierung der Oberflächenabflüsse (2D) kombiniert, um einen bidirektionalen Austausch von Wasservolumen, d.h. einen Austausch in beide Richtungen, zwischen Oberfläche und Kanalnetz an den Schächten und Straßenabläufen zu berücksichtigen. Die Erarbeitung der Starkregengefahren erfolgt basierend auf der von den BWB und der für Wasserwirtschaft zuständigen Senatsverwaltung gemeinsam entwickelten Leistungsbeschreibung „Erstellung von Starkregengefahrenkarten für Berliner Misch- bzw. Regenwassereinzugsgebiete“. Voraussetzung sind Daten zu Topographie, Gebäuden, Straßen, Versiegelung und bodenkundlichen Kennwerten sowie Kanalnetzdaten . Für die 1D-Modellierung des Kanalnetzes wird das aktuelle Kanalnetz (Misch- oder Trennkanalisation) der BWB verwendet. Die Entwässerungsinfrastruktur wird durch ein Kanalnetzmodell abgebildet, wobei dieses u.a. Schächte, Straßenabläufe, Haltungen und Haltungsflächen berücksichtigt. Auf Grundlage des digitalen Geländemodells wird ein detailliertes, lückenloses und überlappungsfreies 2D-Oberflächenmodell erstellt und um standardisierte Dachformen der Gebäudedaten ergänzt. Mauern oder Bordsteine werden durch Bruchkanten berücksichtigt. Die Oberflächenbeschaffenheit des Untersuchungsgebietes beeinflusst die Abflussbildung und -konzentration, daher wird basierend auf den entsprechenden Datengrundlagen (siehe Kapitel Datengrundlage) zwischen Gebäudeflächen, Straßen und Wegen, Gewässer und Grünflächen unterschieden. Mauern, Bordsteine oder ähnliche linienhafte Elemente können Abflusshindernisse darstellen, werden aufgrund der Auflösung jedoch nicht durch das DGM abgebildet und werden – falls sie abflussrelevant sind – nachträglich über Bruchkanten berücksichtigt. Maßgebliche Datensätze für Gebäudeflächen sind die ALKIS-Gebäude und der Datensatz der Gründächer (im Bereich der Kleingärten). Bei der Abflussbildung von Dachflächen wird zwischen einleitenden und nicht einleitenden Dächern basierend auf den Daten der Erfassung des Niederschlagsentgelts unterschieden. Einleitende Dächer werden in der Modellierung als direkt an den Kanal angeschlossen betrachtet (1D-Abflussbildung). Bei nicht einleitenden Dächern erfolgt die Abflussbildung über das Oberflächenabflussmodell. In diesem Fall wird der effektive Niederschlag auf die umliegende Oberfläche verteilt, indem das Prinzip der Randverteilung angewendet wird. Straßen und Wege umfassen alle befestigten Flächen, wie Straßen, Wege, Plätze und private versiegelte Flächen. Die Abflussbildung dieser Flächen erfolgt über das 2D-Oberflächenabflussmodell und es wird nicht zwischen einleitend und nicht einleitend unterschieden. Als Gewässerflächen werden alle stehenden Gewässer und Fließgewässer aus dem ALKIS-Datensatz angenommen. Alle restlichen Flächen werden als Grünflächen angesetzt. Für diese Flächen werden im Modell entsprechende Abflussparameter, wie Benetzungs- und Muldenverluste sowie Anfangs- und Endabflussbeiwerte, basierend auf Literaturwerten, angesetzt. Das Modell bildet den Rückhalt der Vegetation (Interzeption), die Versickerungsfähigkeit des Bodens und die Oberflächenrauheiten ab. Für Hochwasserrisikogebiete (SenMVKU, 2024) wurden in Berlin im Rahmen der Hochwasserrisikomanagementrichtlinie bereits Hochwassergefahrenkarten erarbeitet und Überschwemmungsgebiete ausgewiesen. Um keine Überschneidungen mit den Starkregengefahrenkarten zu erzielen, werden diese Gewässer als hydraulisch voll leistungsfähig angenommen. Außerdem wird für bestimmte Gewässer (z.B. Gewässer 1. Ordnung, Nordgraben) angenommen, dass diese bei kurzen Starkregenereignissen ausreichend hydraulisch leistungsfähig sind. Ein „Anspringen“ ist erst bei länger anhaltenden, räumlich ausgeprägteren Niederschlagsereignissen zu erwarten. Das Modell geht davon aus, dass ein Austritt von Wasser und somit eine Überflutung von diesen Gewässern methodisch nicht möglich ist. Außerdem werden diese Gewässer mit einem einheitlichen Vorflutwasserstand für ein mittleres Hochwasser (für das seltene und außergewöhnliche Ereignis) sowie für ein 100-jährliches Hochwasser (für das extreme Ereignis) angenommen. Im Modell werden für das seltene und außergewöhnliche Ereignis die tatsächlichen Gewässerverrohrungen bzw. -durchlässe angesetzt. Für das Szenario Extremereignis gilt, dass Durchlässe teilverklaust (Durchmesser > 0,5 m (> DN 500)) oder vollständig verklaust (Durchmesser ≤ 0,5 m (≤ DN 500)) angenommen werden, es sei denn, ein Raumrechen verhindert eine Verklausung. Mit dem aufgestellten Modell werden die Überflutungen von Niederschlagsszenarien mit unterschiedlicher Jährlichkeit berechnet, wobei für die Niederschlagshöhen die koordinierte Starkniederschlagsregionalisierung und -auswertung (KOSTRA) des Deutschen Wetterdienstes (DWD) zugrunde gelegt werden. Es kommt die Revision des Datensatzes KOSTRA-DWD-2020 zum Einsatz. Folgende Szenarien werden im Rahmen des Starkregenrisikomanagements in Berlin betrachtet: seltenes Ereignis : 30 bzw. 50-jährliches Niederschlagsereignis (T = 30a bzw. T = 50a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung außergewöhnliches Ereignis : 100-jährliches Niederschlagsereignis (T = 100a, Dauerstufe 180 Min.) mit einer Euler-Typ II Niederschlagsverteilung extremes Ereignis : 100 mm Niederschlagsereignis in einer Stunde (T extrem) mit einer Blockregenverteilung. Basierend auf einer Sensitivitätsanalyse wurde die maßgebliche Dauerstufe mit 180 Minuten für Berlin ermittelt, wobei hier der höchste Wasserstand als maßgeblich betrachtet wird. Für die Intensität und für den zeitlichen Niederschlagsverlauf wird die Euler-Typ II Verteilung (seltenes und außergewöhnliches Ereignis) oder ein Blockregen mit einer Regendauer von 60 Minuten (extremes Ereignis) angenommen. Neben der Beregnungszeit, die der Dauerstufe der betrachteten Szenarien entspricht, wird in der Modellierung jeweils eine einstündige Nachlaufzeit berücksichtigt. Die Plausibilitätsprüfung erfolgt aufgrund der Ergebnisse des außergewöhnlichen Ereignisses. Es werden unplausible Abflusspfade und Wasseransammlungen ggf. durch Ortsbegehungen geprüft, und nicht berücksichtigte, hydraulisch relevante Strukturen nachgepflegt. Die Methode ist sehr daten- und rechenintensiv, so dass sie nicht berlinweit, sondern nur für ausgewählte Bereiche sukzessive angewandt werden kann. Dafür bietet sie relativ genaue und belastbare Ergebnisse und mit der Methode lassen sich die Abflussbildung und Abflusskonzentration nachvollziehen. Es werden kontinuierlich weitere Gebiete mit der gekoppelten 1D/2D Simulation gerechnet und anschließend online verfügbar gemacht. Die nachfolgende Tabelle zeigt, für welche Gebiete bisher Starkregengefahrenkarten erarbeitet wurden.
Im Kartendienst des Niedersächsischen Umweltportals stehen Ihnen verschiedene thematische Layer zur Verfügung, die eine umfassende Übersicht zu relevanten Umweltinformationen bieten.
| Origin | Count |
|---|---|
| Bund | 632 |
| Kommune | 8 |
| Land | 321 |
| Type | Count |
|---|---|
| Ereignis | 2 |
| Förderprogramm | 581 |
| Gesetzestext | 1 |
| Text | 261 |
| Umweltprüfung | 7 |
| unbekannt | 84 |
| License | Count |
|---|---|
| geschlossen | 128 |
| offen | 783 |
| unbekannt | 25 |
| Language | Count |
|---|---|
| Deutsch | 890 |
| Englisch | 71 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 13 |
| Datei | 6 |
| Dokument | 83 |
| Keine | 611 |
| Unbekannt | 18 |
| Webdienst | 16 |
| Webseite | 280 |
| Topic | Count |
|---|---|
| Boden | 523 |
| Lebewesen und Lebensräume | 614 |
| Luft | 418 |
| Mensch und Umwelt | 936 |
| Wasser | 428 |
| Weitere | 936 |