<p>Biozidprodukte bekämpfen tierische Schädlinge und Lästlinge, aber auch Algen, Pilze oder Bakterien. Sie werden in vielen Bereichen eingesetzt, etwa als Desinfektionsmittel und Holzschutzmittel bis hin zum Mückenspray und Ameisengift. Biozidwirkstoffe können auch potenziell gefährlich für die Umwelt und die Gesundheit von Mensch und Tier sein.</p><p>Was sind Biozide?</p><p>Biozidprodukte sind gemäß europäischer Biozidverordnung (EU 528/2012) dafür bestimmt, Schadorganismen „zu zerstören, abzuschrecken, unschädlich zu machen, ihre Wirkung zu verhindern oder sie in anderer Weise zu bekämpfen“. Sie wirken sich jedoch häufig auch auf andere, sogenannte Nicht-Zielorganismen aus, und können deshalb mit hoher Wahrscheinlichkeit auch ungewollte Wirkungen in der Umwelt entfalten. Die Anwendungsbereiche für Biozidprodukte sind zahlreich. Die Palette der Anwendungen reicht von Desinfektions- und Materialschutzmitteln über Mittel zur Bekämpfung von Nagetieren und Insekten bis hin zu Schiffsanstrichen gegen Bewuchs. Insgesamt werden <a href="https://www.reach-clp-biozid-helpdesk.de/DE/Biozide/Definition/Produktarten.html">22 Produktarten (PT)</a> unterschieden.</p><p>Zahl der Wirkstoffe für Biozidprodukte</p><p>In der Europäischen Union (EU) sind 164 Wirkstoffe für die Verwendung in Biozidprodukten genehmigt (Stand 04/2025). Es gibt zahlreiche weitere Wirkstoffe, die als <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Altstoffe#alphabar">Altstoffe</a> noch auf dem Markt sind und zurzeit überprüft werden. <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Neustoffe#alphabar">Neustoffe</a> befinden sich ebenfalls im Prüfverfahren.</p><p>Meldepflicht von Biozidprodukten</p><p>Für Herstellende oder Einführende gab es bisher keine Mitteilungspflicht über die Menge der jeweiligen Biozidprodukte, die sie in Deutschland verkaufen oder ins Ausland ausführen. Daher war nicht bekannt, welche Mengen an Bioziden in Deutschland hergestellt oder verbraucht werden. Mit der 2021 in Kraft getretenen <a href="https://www.bundesrat.de/SharedDocs/drucksachen/2021/0401-0500/404-21.pdf">Biozidrechts-Durchführungsverordnung</a> wird sich dies in den kommenden Jahren ändern. Bis zum 31.03.2022 mussten diese Daten erstmalig an die Bundesstelle für Chemikalien (BfC) gemeldet werden. In Zukunft erfolgt eine jährliche Meldung bis Ende März des Folgejahres. Derzeit liegen allerdings noch keine ausgewerteten Ergebnisse der ersten Meldungen vor.</p><p>Bis diese Daten vorliegen, liefert die Anzahl der auf dem deutschen Markt erhältlichen Biozidprodukte einen Anhaltspunkt. Neben den bereits zugelassenen Biozidprodukten gibt es Biozidprodukte, die Altwirkstoffe enthalten und deren Überprüfungsverfahren noch nicht abgeschlossen sind. Diese müssen der Bundesstelle für Chemikalien gemeldet werden, um sie in Deutschland verkaufen zu können. Die Bundesstelle gibt jährlich bekannt, welche Biozidprodukte aus welcher der 22 Produktarten auf dem deutschen Markt erhältlich sein dürfen. So waren im April 2025 circa 35.000 Biozidprodukte auf dem deutschen Markt verkehrsfähig, wovon ca. 1.900 Biozidprodukte zugelassen sind (siehe Abb. „Verkehrsfähige Biozidprodukte“).</p><p>Auf der <a href="https://echa.europa.eu/de/information-on-chemicals/biocidal-active-substances">Internetseite</a> der Europäischen Chemikalienagentur (ECHA) kann jeder die abgestimmten Bewertungsberichte für biozide Wirkstoffe einsehen, welche in die Unionsliste der genehmigten Wirkstoffe aufgenommen wurden. Zudem sind alle in den einzelnen EU-Mitgliedsstaaten bereits geprüften und zugelassenen Produkte auf der <a href="https://echa.europa.eu/de/information-on-chemicals/biocidal-products">Internetseite</a> der Europäischen Chemikalienagentur (ECHA) aufgeführt.</p><p>Eintragspfade von Bioziden in die Umwelt</p><p>Aufgrund der unterschiedlichen Anwendungsbereiche kommt es zu vielfältigen Einträgen von Bioziden oder ihren Abbauprodukten in die Umwelt. Sowohl direkte als auch indirekte Einträge, wie zum Beispiel über Kläranlagen, sind möglich und können alle Umweltkompartimente wie Oberflächengewässer, Meeresgewässer, Grundwasser, Sedimente, Böden oder die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> betreffen (siehe Abb. „Eintragspfade von Bioziden in die Umwelt“).</p><p>Biozide Wirkstoffe sind erst seit relativ kurzer Zeit im Fokus der Öffentlichkeit und werden daher deutlich seltener als zum Beispiel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a> von den Überwachungsprogrammen der Bundesländer erfasst. Untersuchungen belegen aber, dass sich auch diese Stoffe in der Umwelt wiederfinden lassen.</p><p>Untersuchungen von Biozideinträgen in Gewässer</p><p>Einträge in die Gewässer können auf direktem Weg erfolgen, beispielsweise durch Antifoulinganstriche an Sportbooten. So wurde beispielsweise die Konzentration des Antifouling-Wirkstoffes Cybutryn (Irgarol<strong>®</strong>) im Sommer 2013 in 50 deutschen Sportboothäfen <a href="https://www.umweltbundesamt.de/publikationen/sicherung-der-verlaesslichkeit-der-antifouling">untersucht</a>. In 35 der 50 Sportboothäfen lagen die gemessenen Konzentrationen über der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=Umweltqualittsnorm#alphabar">Umweltqualitätsnorm</a> für Gewässer von 0,0025 Mikrogramm pro Liter (μg/L), welche die EU-Richtlinie 2013/39/EU vorschreibt. Dieser Wert darf als Jahresdurchschnittskonzentration nicht überschritten werden. An fünf Standorten übertrafen die Konzentrationen sogar die zulässige Höchstkonzentration von 0,016 μg/L (siehe Abb. „Cybutryn-Konzentrationen in Sportboothäfen“). Außerdem wurden in einem <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a> in der <a href="https://www.umweltbundesamt.de/themen/chemikalien/chemikalienforschung-im-uba/fliess-stillgewaesser-simulationsanlage-fsa">Fließ- und Stillgewässersimulationsanlage des Umweltbundesamtes</a> ökotoxikologische Wirkungen auf im Binnengewässer lebende Wasserpflanzen und Kleinstlebewesen nachgewiesen. Aufgrund dieser unannehmbaren Umweltrisiken ist Cybutryn als Antifouling-Wirkstoff seit dem 31. Januar 2017 nicht mehr in der EU verkehrsfähig, darf also nicht mehr gehandelt und verkauft werden. Untersuchungen von Schwebstoffproben der <a href="https://www.umweltprobenbank.de/de">Umweltprobenbank</a> an sieben Standorten von großen deutschen Flüssen zeigten eine Abnahme der Cybutryn-Konzentrationen über die Jahre 2011 bis 2020. Allerdings treten trotz des Verbots des Wirkstoffs noch immer ubiquitär geringe Gehalte in den Schwebstoffen auf (<a href="https://www.umweltbundesamt.de/publikationen/umweltprobenbank-des-bundes-1">UBA TEXTE 119/2022</a>).</p><p>Biozide werden auch in Baumaterialien eingesetzt, zum Beispiel in Fassadenfarben oder Außenputzen, um diese vor einem unerwünschten Algen- oder Pilzbewuchs zu schützen. Durch den Regen werden diese Substanzen von den Fassaden abgespült und gelangen entweder zusammen mit dem häuslichen Schmutzwasser in die Mischkanalisation und anschließend in die Kläranlage, oder sie erreichen Oberflächengewässer über den Regenkanal direkt und oft unbehandelt.</p><p>Das Kompetenzzentrum Wasser Berlin (<a href="https://www.kompetenz-wasser.de/de">KWB</a>) hat in Zusammenarbeit mit den Berliner Wasserbetrieben und der Ostschweizer Fachhochschule (<a href="https://www.ost.ch/de/">OST</a>) im Auftrag des Umweltbundesamtes (UBA) in zwei Neubaugebieten in Berlin über zwei Jahre den Austrag von <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2022-01-28_texte_155-2021_bauen_sanieren_schadstoffquelle.pdf">Bioziden und weiteren Stoffen aus Bauprodukten</a> erforscht. Anhand von Felduntersuchungen, Produkttests und Modellierungen wurde untersucht, aus welchen Bauprodukten Biozide und andere Stoffe in das abfließende Regenwasser gelangen. Besonders die Biozidwirkstoffe Terbutryn und Diuron gelangten in Konzentrationen in den Regenkanal, die über den Umweltqualitätsparametern für Gewässer liegen (<a href="https://doi.org/10.3390/w14030303">Wicke et al. 2022</a>). Anhand von Frachtabschätzungen konnte zudem gezeigt werden, dass ein Großteil der Stoffmenge vor Ort verbleibt und zusammen mit dem Regenwasser versickert. Durch die Versickerung kann es jedoch zu einer Belastung des Bodens und Grundwassers kommen (siehe Abb. Spurenstoff-Konzentrationen im Gebietsabfluss (Regenkanal) eines Baugebiets).</p><p>Anhand eines <a href="https://www.umweltbundesamt.de/publikationen/belastung-der-umwelt-bioziden-realistischer">deutschlandweiten Kläranlagen-Monitoringprojektes</a> konnte gezeigt werden, dass Biozide, die über die Kanalisation in die Kläranlage gelangen, nicht alle gleichermaßen eliminiert werden. Das Karlsruher Institut für Technologie (<a href="https://isww.iwg.kit.edu/index.php">KIT</a>) und das DVGW-Technologiezentrum Wasser (<a href="https://tzw.de/">TZW</a>) untersuchten im Auftrag des Umweltbundesamtes über einen Zeitraum von mehr als einem Jahr (11/2017-04/2019) 29 kommunale Kläranlagenabflüsse auf 26 Biozidwirkstoffe und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Transformationsprodukte#alphabar">Transformationsprodukte</a>. Vor allem Substanzen aus dem Bereich der Materialschutzmittel und Insektizide wurden im Kläranlagenablauf wiedergefunden (siehe Abb. „Kläranlagenmonitoring“). Teilweise lagen die Konzentrationen hierbei über dem jeweiligen Umweltqualitätsparameter für die Gewässer.</p><p>Aber auch Stoffe, die beispielsweise aufgrund ihrer hohen Adsorptionsneigung in der Regel sehr gut in Kläranlagen zurückgehalten werden (Anreicherung im Klärschlamm), können Gewässer belasten. Sie gelangen insbesondere bei starken Regenereignissen ins Gewässer, wenn unbehandeltes Mischwasser (häusliches Abwasser plus Regenwasser) kontrolliert aus der Kanalisation ins Gewässer eingeleitet wird, um ein Überlaufen der Kläranlage zu verhindern. Dieser relevante Eintragspfad konnte unter anderem für das Schädlingsbekämpfungsmittel Permethrin gezeigt werden, bei dem die Umweltqualitätsparameter in Mischwasserentlastungen deutlich überschritten wurden (<a href="https://doi.org/10.1016/j.watres.2021.117452">Nickel et al. 2021</a>).</p><p>Funde von Bioziden in Schwebstoffen</p><p>Gelangen stark adsorptive Stoffe ins Gewässer, so können diese sich in Schwebstoffen, im Sediment und folglich auch in Sedimentbewohnern anreichern und zu unterwünschten Effekten führen (Dierkes et al. in prep.). Biozide mit einem hohen Sorptionsverhalten wurden in einem von der Bundesanstalt für Gewässerkunde (<a href="https://www.bafg.de/DE/0_Home/home_node.html">BfG</a>) durchgeführten Projekt in ausgewählten Schwebstoffproben der Umweltprobenbank der Jahre 2008-2021 chemisch analysiert, um die langfristige Entwicklung der Gewässerbelastung im urbanen Bereich zu untersuchen.</p><p>Insgesamt 16 der 25 untersuchten Biozide wurden in Schwebstoffen nachgewiesen, wobei 10 Stoffe (vor allem Azolfungizide, Triazine und Quartäre Ammoniumverbindungen-QAV) in sämtlichen Proben gefunden wurden. Dies verdeutlicht die ubiquitäre Belastung von Schwebstoffen mit Bioziden. Das Pyrethroid Permethrin konnte nur in wenigen Schwebstoffproben oberhalb der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bestimmungsgrenze#alphabar">Bestimmungsgrenze</a> gefunden werden, dabei überschritten die Konzentrationen aber durchgehend die Predicted no effect concentration (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PNEC#alphabar">PNEC</a>) für das Kompartiment Sediment von 1,0 ng/g (ECHA, 2014). Dies zeigt die Relevanz dieser Substanz und vermutlich der gesamten Stoffklasse der Pyrethroide für das Schwebstoffmonitoring.</p><p>Für die Materialschutzmittel Propiconazol und Tebuconazol, die QAV ADBAC C12-C14 und DDAC C8-C10 und für das Pyrethroid Permethrin sind in der folgenden Abbildung (siehe Abb. Biozid-Konzentrationen in Schwebstoffen) für alle Probenahmestandorte die gemessenen Konzentrationen in den Schwebstoffen bezogen auf das Trockengewicht (TG) für die Jahre 2013-2019 exemplarisch dargestellt.</p><p>Belastung von Lebewesen mit Bioziden</p><p>Sind Biozide einmal in die Umwelt gelangt, können diese auch zu einer Belastung von Lebewesen führen. Davon sind sowohl terrestrische als auch aquatische Lebensgemeinschaften betroffen. Beispielsweise werden die blutgerinnungshemmenden Wirkstoffe (Antikoagulanzien), die in giftigen Fraßködern zur Bekämpfung von Ratten und Mäusen enthalten sind, häufig in der Umwelt, insbesondere in Wildtieren nachgewiesen. Dies ist vor allem auf die für die Umwelt sehr problematischen Eigenschaften dieser Wirkstoffe zurückzuführen. Die meisten dieser Substanzen sind sogenannte <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PBT#alphabar">PBT</a>-Stoffe, das heißt, sie werden in der Umwelt nur schlecht abgebaut (P = persistent), besitzen ein hohes Potential zur Anreicherung in anderen Lebewesen (B = bioakkumulierend) und sind zudem giftig (T = toxisch) (<a href="https://www.umweltbundesamt.de/publikationen/antworten-auf-haeufig-gestellte-fragen-zu">Umweltbundesamt, 2019</a>).</p><p>In einer vom Julius-Kühn-Institut im Auftrag des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> durchgeführten Untersuchung wurden 2018 erstmalig in Deutschland systematisch Rückstände von Antikoagulanzien in wildlebenden Tieren untersucht. <a href="https://www.umweltbundesamt.de/publikationen/rueckstaende-von-als-rodentizid-ausgebrachten">Die Ergebnisse</a> zeigen, dass sowohl in verschiedenen Kleinsäugerarten (zum Beispiel Wald- und Spitzmäusen, die nicht Ziel der Bekämpfung und teilweise besonders geschützte Arten sind) als auch in Eulen und Greifvögeln (vor allem Mäusebussarden) Rückstände von Antikoagulanzien nachweisbar sind. Auch wurden in 61 % von insgesamt 265 untersuchten Leberproben von Füchsen Rückstände von Antikoagulanzien gefunden (<a href="https://doi.org/10.1371/journal.pone.0139191">Geduhn et al. 2016</a>).</p><p>Auch aquatische Organismen sind mit Antikoagulanzien belastet. So wurden vor einigen Jahren Rückstände von Antikoagulantien in Deutschland erstmalig in Fischen nachgewiesen <a href="https://doi.org/10.1007/s11356-018-1385-8">(Kotthoff et al. 2018</a>). Im Rahmen einer vom UBA in Auftrag gegebenen Untersuchung durch das Fraunhofer Institut für Molekulare Biologie und Angewandte Ökologie wurden Leberproben von Brassen (Abramis brama) aus den größten Flüssen in Deutschland – darunter Donau, Elbe und Rhein – sowie aus zwei Seen untersucht. In allen Fischen der bundesweit 16 untersuchten Fließgewässer-Standorte im Jahr 2015 wurde mindestens ein Antikoagulans der 2. Generation nachgewiesen. Lediglich in Proben von Fischen aus den beiden Seen wurde keine Belastung mit Antikoagulanzien festgestellt. In fast 90 % der 18 untersuchten Fischleberproben wurde Brodifacoum mit einem Höchstgehalt von 12,5 μg/kg Nassgewicht nachgewiesen. Difenacoum und Bromadiolon kamen in 44 bzw. 17 % der Proben vor (siehe Abb. „Rodentizide in Fischen“). In einer späteren von der Bundesanstalt für Gewässerkunde (BfG) durchgeführten Studie wurde gezeigt, dass Antikoagulanzien bei der konventionellen Abwasserbehandlung nicht vollständig eliminiert werden und sich in der Leber von Fischen anreichern. Insbesondere bei Starkregen- und Rückstauereignissen führt die gängige Praxis der Ausbringung von Fraßködern am Draht in der Kanalisation zur Freisetzung antikoagulanter Wirkstoffe in die aquatische Umwelt (<a href="https://www.sciencedirect.com/science/article/pii/S0048969720334252">Regnery et al. 2020</a>).</p><p>Datenportal „Biozide in der Umwelt – BiU“</p><p>Um nachvollziehen zu können, wie groß die Belastung der Umwelt mit Bioziden tatsächlich ist und ob Maßnahmen zur Reduktion des Eintrags von Bioziden in die Umwelt wirkungsvoll sind, wurde ein eigenständiges Modul in der Datenbank "Informationssystem Chemikalien" (ChemInfo) des Bundes und der Länder angelegt. Die neu entwickelte Datenbank „<a href="https://recherche.chemikalieninfo.de/biu">Biozide in der Umwelt</a>“ (BiU) stellt frei zugänglich und kostenlos Umweltmonitoringdaten zu Bioziden aus Deutschland, Österreich und der Schweiz zur Verfügung. Derzeit sind 91 biozide Wirkstoffe mit Datensätzen aus etwa 80.000 Wasser-/Abwasserproben, 380 Boden-/Klärschlammproben sowie 4.500 biotischen Proben recherchierbar. An einer Erweiterung des Datenumfangs wird aktuell gearbeitet. Neben den Monitoringdaten werden auch Informationen zur Zulassung der Wirkstoffe im Rahmen der Biozid-Verordnung sowie physikalisch-chemische Daten bereitgestellt.</p>
Derzeit werden die allgemeinen physikalisch-chemischen Parameter (ACP) in 72 Wasserkörpern und die flussgebietsspezifischen Schadstoffe in 73 Wasserkörpern untersucht. Die flussgebietsspezifischen Schadstoffe und die ACP werden zur unterstützenden Bewertung des ökologischen Zustandes der Seen herangezogen. Im Rahmen des chemischen Monitorings für die WRRL wird je See eine repräsentative Messstelle, welche zumeist an der tiefsten Stelle liegt, beprobt. Die ACP Gesamtphosphorkonzentration und Sichttiefe werden bei den Seen anhand von sogenannten Orientierungswerten beurteilt. Sie dienen in der Regel der Plausibilisierung der Bewertung anhand der biologischen Qualitätskomponenten. Die flussgebietsspezifischen Schadstoffe beziehen sich sowohl auf die Wasserphase als auch auf das Sediment. Sie gehen nach dem one out all out Prinzip in die Bewertung des ökologischen Zustandes ein. Ist eine Umweltqualitätsnorm überschritten, kann demnach der ökologische Zustand höchstens mäßig sein.
Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB
Derzeit werden die allgemeinen physikalisch-chemischen Parameter (ACP) in 72 Wasserkörpern und die flussgebietsspezifischen Schadstoffe in 73 Wasserkörpern untersucht. Die flussgebietsspezifischen Schadstoffe und die ACP werden zur unterstützenden Bewertung des ökologischen Zustandes der Seen herangezogen. Im Rahmen des chemischen Monitorings für die WRRL wird je See eine repräsentative Messstelle, welche zumeist an der tiefsten Stelle liegt, beprobt. Die ACP Gesamtphosphorkonzentration und Sichttiefe werden bei den Seen anhand von sogenannten Orientierungswerten beurteilt. Sie dienen in der Regel der Plausibilisierung der Bewertung anhand der biologischen Qualitätskomponenten. Die flussgebietsspezifischen Schadstoffe beziehen sich sowohl auf die Wasserphase als auch auf das Sediment. Sie gehen nach dem one out all out Prinzip in die Bewertung des ökologischen Zustandes ein. Ist eine Umweltqualitätsnorm überschritten, kann demnach der ökologische Zustand höchstens mäßig sein.
The German Environment Agency has conducted tests to determine the ecotoxicity of TNT and its metabolites 2-ADNT and 4-ADNT, as well as other munition compounds (1,3-DNB and 2,6-DNT) by using two marine diatom species ( Phaeodactylum tricornutum and Skeletonema marinoi ) in accordance with DIN EN ISO 10253 (2016) and derived effect concentrations on this basis. Environmental quality standards (EQS), as applied in the Water Framework Directive and Marine Strategy Framework Directive, were derived for TNT in water and biota. A proposal for monitoring the EQS was made after comparing the EQS with measured environmental concentrations of TNT. Veröffentlicht in Texte | 136/2025.
Ziel des Vorhabens ist es unter Berücksichtigung vorhandener Informationen und ggf. zusätzlich zu untersuchender Proben Oberflächenwasserkörper mit natürlicherweise erhöhten Gehalten an Blei (Pb), Cadmium (Cd), Kupfer (Cu), Nickel (Ni) und/oder Zink (Zn) in der Wasserphase oder im Sediment/Schwebstoff zu identifizieren und für diese Wasserkörper die natürlichen Hintergrundkonzentrationen für diese Schwermetalle in der Wasserphase sowie im Sediment/Schwebstoff abzuleiten. Auf Basis der Ergebnisse können einerseits für diejenigen Wasserkörper, in denen die Umweltqualitätsnormen (UQN)für die prioritären Metalle Pb, Cd und Ni auf Grund von natürlichen Gegebenheiten überschritten werden, Ausnahmen nach Artikel 4(5) WRRL geltend gemacht werden. Andererseits wird die Ursachenforschung für die fünf betrachteten Metalle deutlich unterstützt. Dadurch können Minderungsmaßnahmen zielgerichteter und kosteneffizienter gestaltet werden.
Veranlassung Organische Spurenstoffe bilden beim Monitoring der Gewässergüte das größte, weiterhin zunehmende Stoffspektrum. Nach der EU-Wasserrahmenrichtlinie stellt sich die Frage, für welche Spurenstoffe Umweltqualitätsnormen festzusetzen sind und welche Maßnahmen an welchen Stellen die Konzentrationen in den Gewässern effektiv verringern können. Für eine sichere Trinkwasserversorgung aus Uferfiltrat bedarf es auch vor dem Hintergrund der angestrebten Resilienz gegenüber den Folgen des Klimawandels besserer Kenntnisse der Bedingungen, unter denen Grenz- oder Orientierungswerte im Rohwasser überschritten werden. Antworten auf diese Fragen werden dadurch erschwert, dass Transport- und Abbauverhalten organischer Spurenstoffe im Gewässer oft nicht oder nur unzureichend bekannt sind. Dies limitiert auch Prognosen zu Auswirkungen von Unterhaltungs- und Ausbaumaßnahmen auf den chemischen Zustand von Bundeswasserstraßen. Die Aufklärung der reaktiven Eigenschaften bestimmter Stoffe und Stoffgruppen im Fließgewässer und die entsprechend fortentwickelte Modellierung ermöglichen eine Optimierung des Gütemonitorings zum Schutz der Flüsse und der Trinkwasserressourcen. Die Ergebnisse liefern wesentliche Grundlagen, um die Belastung durch bestimmte Spurenstoffgruppen besser einzuschätzen, Belastungsschwerpunkte zu identifizieren und Minimierungsmaßnahmen gezielt planen zu können. Darüber hinaus werden durch erweitertes Prozessverständnis und Modellgrundlagen Voraussetzungen geschaffen, um die Auswirkungen des Klimawandels auf die stoffliche Belastung in Bundeswasserstraßen besser einschätzen zu können. Zur Modellierung organischer Spurenstoffe in Flüssen sind unterschiedliche Modelle im Einsatz. Explizite Gewässergütemodelle mit spezifischen Modulen zum reaktiven Transport organischer Spurenstoffe in Fließgewässern, die auch Photolyse, Sorption und Biodegradation berücksichtigen, sind bisher nur sehr wenige etabliert. Allen Modellen mangelt es an der Implementierung spezifischer Terme, die für den reaktiven Transport besonders relevanter Spurenstoffe bzw. -stoffgruppen im Fließgewässer maßgeschneidert sind. In der Regel fehlen Kenntnisse über das Abbauverhalten der Substanzen und über ihre Transformationsprodukte als Voraussetzung für die modelltechnische Umsetzung. Das Gewässergütemodell QSim der Bundesanstalt für Gewässerkunde (BfG) bietet gute Voraussetzungen für eine ergänzende Entwicklung zur gezielten Simulation des reaktiven Spurenstofftransports in Flüssen: Eine numerische Lösung für den Stofftransport liegt vor und wesentliche Eingangsgrößen für den Spurenstoffabbau sind bereits im Modell angelegt. Fragen zur wasserwirtschaftlichen und ökologischen Belastung durch organische Spurenstoffe und zu deren Modellierung bewegen auch die Wasserwirtschaftsverbände im Rheineinzugsgebiet. Mit Unterstützung der BfG hat der Ruhrverband für Lenne und Ruhr QSim-Modellinstanzen aufgebaut. Ferner wurde vom Ruhrverband ein erster Ansatz zur gezielten Simulation eines photolytisch sensitiven organischen Spurenstoffes mit QSim entwickelt. Da sich zur Aufklärung der Prozesse des reaktiven Spurenstofftransports kleinere Fließgewässer besser eignen als große Flüsse, bietet sich die Kooperation mit einem Wasserwirtschaftsverband des Rheingebietes an, um anhand eines gezielten Prozessmonitorings an einem Zufluss grundlegende Erkenntnisse für die Spurenstoffmodellierung im Rhein ableiten zu können. Da der Ruhrverband und die BfG großes Interesse daran haben, zum Transport- und Abbauverhalten von Spurenstoffen und zu deren Modellierung zusammenzuarbeiten, soll das Forschungsprojekt in Kooperation durchgeführt werden.
Die Fische in ausgewählten Fließgewässern Sachsens werden regelmäßig auf Schadstoffe nach lebensmittelrechtlichen Vorgaben und auf prioritäre Stoffe laut Oberflächengewässerverordnung (OgewV) bezüglich der Einhaltung von Umweltqualitätsnormen beprobt. Für die untersuchten Gewässer werden differenzierte Verzehrempfehlungen gegeben, die sowohl lokale Besonderheiten als auch Abhängigkeiten von Art und Größe berücksichtigen.
<p>Das Insektizid Parathion ist seit Jahren nicht mehr zugelassen. Dennoch kommt es vor allem in längere Zeit ungenutzten Kleingärten immer wieder zu Funden des auch als E 605 bekannten Nervengifts. E 605 ist umweltgefährdend, schon bei Hautkontakt giftig für Menschen und aufgrund seiner toxischen Wirkung ein chemischer Kampfstoff – viele Gründe, um über den Umgang mit Parathion-Funden aufzuklären.</p><p>Bei Parathion (auch: Parathionethyl oder Thiophos) handelt es sich um eine gelbe, knoblauchartig riechende Flüssigkeit, die im Wasser nach unten sinkt. Auch die Dämpfe sind schwerer als Luft. Es hemmt das vom Nervensystem benötigte Enzym Acetylcholinesterase und ist als lebensgefährlich beim Einatmen und Verschlucken eingestuft. Auch bei Hautkontakt ist es giftig. Das IARC Monographs-Programm listet Parathion in der Gruppe 2B als <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stoff#alphabar">Stoff</a>, der bei andauernder <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a> möglicherweise krebserzeugend für Menschen ist. Es ist außerdem sehr giftig für Wasserorganismen, auch mit langfristiger Wirkung (H410), und stark wassergefährdend.</p><p>Aufgrund der verschiedenen schwerwiegenden Gefahren für Mensch und Umwelt, die von <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=E_605#alphabar">E 605</a> ausgehen, gibt es Verbote zum Inverkehrbringen in Bedarfsgegenständen sowie festgelegte Rückstandshöchstmengen an verschiedenen Lebensmitteln und klare rechtliche Vorgaben zur Lagerung des Stoffes. Außerdem gilt ein Geringfügigkeitsschwellenwert von 0,005 µg/l für das Grundwasser sowie ein Jahresdurchschnittswert von 0,005 µg/l als <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=Umweltqualittsnorm#alphabar">Umweltqualitätsnorm</a> für sowohl Fließgewässer und Seen als auch Übergangs- und Küstengewässer. Mit dem richtigen Verhalten können Einsatzkräfte die Einhaltung dieser Grenzwerte zum Schutz von Mensch und Umwelt unterstützen.</p><p><strong>Wie schützen Einsatzkräfte sich selbst und die Umwelt?</strong></p><p>Aufgrund der toxischen Wirkung ist bei Einsätzen in Anwesenheit von Parathion der Eigenschutz extrem wichtig. Einsatzkräfte sollten insbesondere auch zum Schutz der Haut Körperschutzform 3 nach FWDV 500 tragen. Der AEGL2-Wert für 4 h liegt mit 0,96 mg/m3 etwa im Bereich von Quecksilberdampf (0,67 mg/m³). Da Parathion-Dämpfe schwerer als Luft sind, sollten tiefergelegene Bereiche gemieden werden.</p><p>Ein Eindringen der Chemikalie in Kanalisation und Gewässer muss aufgrund der hohen Giftigkeit gegenüber Wasserorganismen mit allen verfügbaren Maßnahmen verhindert werden. Als Bindemittel können trockener Sand, Erde, Kieselgur, Vermiculit oder Ölbinder eingesetzt werden. Geeignete Abdichtmaterialien sind unter anderem Butyl-, Chlor- oder Fluorkautschuk sowie PTFE.</p><p><strong>Und wenn es brennt?</strong></p><p>Im Falle eines Parathion-Brandes kommt es zur Freisetzung von giftigen Gasen, Schwefeldioxid oder Phosphoroxiden. Ein Wasser-Sprühstrahl ist zum Löschen zwar geeignet, jedoch muss das Löschwasser aufgrund der großen Umweltgefahr aufgefangen werden. Alternativ können auch Trockenlöschmittel zum Einsatz kommen. Sofern dies gefahrlos möglich ist, sollte man das Feuer am besten ausbrennen lassen. Grundsätzlich sollte Parathion nicht mit brennbaren Stoffen oder Oxidationsmitteln zusammengelagert und von Zündquellen ferngehalten werden. Die Entsorgung muss in einer genehmigten Anlage mit geeignetem Verbrennungsofen erfolgen.</p><p><p><strong>Die Gefahrstoffschnellauskunft</strong></p><p>Die Gefahrstoffschnellauskunft (GSA) ist Teil der Chemikaliendatenbank ChemInfo. Sie kann von öffentlich-rechtlichen Institutionen des Bundes und der am Projekt beteiligten Länder sowie von Institutionen, die öffentlich-rechtliche Aufgaben wahrnehmen, genutzt werden. Das sind u.a. Fachberater sowie Feuerwehr, Polizei oder andere Einsatzkräfte. ChemInfo und die GSA geben Auskunft über die gefährlichen Eigenschaften und über die wichtigsten rechtlichen Regelungen von chemischen Stoffen.</p></p><p><strong>Die Gefahrstoffschnellauskunft</strong></p><p>Die Gefahrstoffschnellauskunft (GSA) ist Teil der Chemikaliendatenbank ChemInfo. Sie kann von öffentlich-rechtlichen Institutionen des Bundes und der am Projekt beteiligten Länder sowie von Institutionen, die öffentlich-rechtliche Aufgaben wahrnehmen, genutzt werden. Das sind u.a. Fachberater sowie Feuerwehr, Polizei oder andere Einsatzkräfte. ChemInfo und die GSA geben Auskunft über die gefährlichen Eigenschaften und über die wichtigsten rechtlichen Regelungen von chemischen Stoffen.</p>
| Origin | Count |
|---|---|
| Bund | 94 |
| Land | 102 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 24 |
| Kartendienst | 7 |
| Text | 90 |
| Umweltprüfung | 9 |
| unbekannt | 50 |
| License | Count |
|---|---|
| geschlossen | 146 |
| offen | 30 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 164 |
| Englisch | 33 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 20 |
| Datei | 9 |
| Dokument | 94 |
| Keine | 43 |
| Unbekannt | 4 |
| Webdienst | 11 |
| Webseite | 59 |
| Topic | Count |
|---|---|
| Boden | 128 |
| Lebewesen und Lebensräume | 146 |
| Luft | 118 |
| Mensch und Umwelt | 181 |
| Wasser | 169 |
| Weitere | 170 |