Rüdel, Heinz; Steinhanses, Jürgen; Müller, Josef; Schröter-Kermani, Christa Umweltwiss. Schadst. Forsch. 21 (2009), 3, 282-291 Organozinnverbindungen werden als Biozide, Kunststoffadditive und Katalysatoren eingesetzt. Bezüglich der Umweltrelevanz am wichtigsten sind Tributylzinn- (TBT) und Triphenylzinnverbindungen (TPT), die bei Einträgen in Gewässer über eine hohe Toxizität verfügen und endokrine Wirkungen in Muscheln und Schnecken auslösen können. TBT wurde hauptsächlich als Antifouling-Wirkstoff in Schiffsanstrichmitteln eingesetzt. Diese Anwendung ist seit 1989 in Deutschland für Schiffe mit weniger als 25 m Länge untersagt. Seit 2003 ist in der Europäischen Union (EU) eine Richtlinie in Kraft, die die Anwendung von organozinnbasierten Antifouling-Anstrichen generell verbietet. Die hier vorgestellten Untersuchungen sollten überprüfen, ob die erlassenen Verbote zu einer Reduktion der Einträge in die marine Umwelt geführt haben. Für die Untersuchung wurden tiefgefrorene Homogenatproben von Miesmuscheln (Mytilus edulis) und Muskulatur von Aalmuttern (Zoarces viviparus) aus Nord- und Ostsee aus dem Archiv der Umweltprobenbank verwendet. Die Organozinnverbindungen wurden aus den biologischen Proben mit n-Hexan extrahiert und anschließend mit Natriumtetraethylborat derivatisiert. Nach kapillargaschromatografischer Trennung wurden die Derivate mit einem Atomemissionsdetektor quantifiziert. Zusammen mit einer früheren Untersuchung (Rüdel et al. 2003) umfassten die Zeitreihen Miesmuschel- und Fischmuskulaturproben der Jahre 1985 bis 2006. Die Daten zeigen, dass die TBT-Gehalte bis Ende der 1990er-Jahre unverändert blieben (z. B. in Miesmuscheln aus dem Jadebusen/Nordsee: 17 ± 3 ng/g Frischgewicht, FG). Offensichtlich zeigte das seit 1989 in Deutschland geltende Verbot der TBT-Anwendung bei kleinen Schiffen in dieser Meeresregion keine Wirkung, da hier der Verkehr mit großen Schiffen dominiert. Der weitere Verlauf der Zeitreihen belegt jedoch, dass die TBT-Konzentrationen in Miesmuscheln und Aalmuttern nach 2003, als die EU-Richtlinie zum generellen Verbot der Organozinnverbindungen in Kraft trat, signifikant abnehmen. 2004 und 2005 wurden in den Muscheln aus dem Jadebusen nur noch TBT-Gehalte von 14 bzw. 6 ng/g FG gefunden. In Aalmuttern aus derselben Region sanken die Gehalte an TBT zwischen Ende der 1990er-Jahre und 2006 auf ca. 30 % des Ausgangswertes. Auch für TPT, das zeitweise ebenfalls als Antifouling-Wirkstoff eingesetzt wurde, sind deutliche Abnahmen in Muscheln und Fischen zu beobachten. Der statistisch signifikante Rückgang der OZV-Belastungen in den untersuchten Nordseeregionen wird durch Messungen in Muscheln und Fischen von einem küstennahen Ostseestandort bestätigt. Insgesamt belegen die Untersuchungen den Erfolg der regulatorischer Maßnahmen zur Minderung der Einträge von Organozinnverbindungen in die aquatische Umwelt. Trotz der Reduktion zeigen die Gewebekonzentrationen aber auch, dass OZV nach wie vor Relevanz als marine Schadstoffe haben. Eine Umrechnung der Gewebekonzentrationen auf Wasserkonzentrationen ergibt, dass diese noch über der im Kontext der Wasserrahmenrichtlinie abgeleiteten Umweltqualitätsnorm von 0,2 ng/l liegen. Auch von OSPAR publizierte Bewertungskriterien (Environmental Assessment Criteria, EAC; 2,4 ng/g FG) werden aktuell noch überschritten. Insofern sind schädliche Wirkungen auf marine Organismen durch TBT nicht auszuschließen. Weitere Untersuchungen sollen zeigen, ob die abnehmenden Trends andauern. Hierzu sollte eine empfindlichere Methode wie z. B. speziesspezifische Isotopenverdünnungsanalytik verwendet werden, um niedrigere Bestimmungsgrenzen zu erreichen und die inzwischen abgesunkenen Konzentrationen mit ausreichender Sicherheit quantifizieren zu können. doi: 10.1007/s12302-009-0039-3
Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB Gemäß Europäischer Wasserrahmenrichtlinie (WRRL) wurden die Daten, die dem aktualisierten Bewirtschaftungsplan (2016-2021) zugrunde liegen, für die zweite Aktualisierung des Bewirtschaftungsplans (2022-2027) überprüft und aktualisiert. Diese überarbeiteten Bewirtschaftungspläne, Maßnahmenprogramme und Daten werden nach Verabschiedung zum 22.12.2021 veröffentlicht. Begleitend stehen die zugrundeliegenden Fachdaten des Landesamtes für Umwelt Brandenburg über das Downloadportal zur Verfügung. Die Daten beinhalten Informationen zu: - Wasserkörpergrenzen, - Typen und Kategorien der Oberflächenwasserkörper, - Risikobewertung, - Messstellen, - Zustandsbewertung, - Bewirtschaftungsziele. Die Datensammlung beinhaltet nachfolgende Dateien: Geometrien und Tabellen zu folgenden Themen werden jeweils in den entsprechenden Dokumentationen beschrieben. Geometrien: Rwbody_debb - Fließgewässerwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Lwbody_debb - Seewasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Gwbody_debb - Grundwasserkörper, Geometrie mit Charakteristik und Zustandsbewertung Wfd_parea_d_debb - Wasserschutzgebiete Parea_n_debb - Nährstoffsensible Gebiete Wfd_parea_b_debb - wasserabhängige SPA-Gebiete Wfd_parea_h_debb - wasserabhängige FFH - Gebiete Wfd_parea_r_debb - Badestellen Wfd_compath_debb - Koordinierungsräume Planunit_debb - Planungseinheiten Wfd_swstn_debb - Messstellen Oberflächengewässer Wfd_gwstn_debb - Messstellen Grundwasser TABELLEN: QE_ECO_SWSTN_DEBB - Messprogramm - Ökologie CHEM_MON_DEBB - Messprogramm - Chemie WFD_CHEMSTSW_DEBB - Begründung chemischen Ausnahmen Oberflächenwasserkörper substanzscharf WFD_CHEMSTGW_DEBB - Begründung chemische Ausnahmen Grundwasserkörper substanzscharf WFD_L_CHEMSTSW_DEBB - Begründung chemische Ausnahmen der Oberflächenwasserkörper nach LAWA WFD_MSRPROG_DEBB - Maßnahmenprogramm 3. BWZ WFD_WBEXEMPT_DEBB - Umweltziele 3. BWZ WFD_PAREA_DEBB - Zustandsbewertung Schutzgebiete WFD_MRPUQN_DEBB - Überschreitung der Umweltqualitätsnormen bei Maßnahmen CHEM_MON_UQN - Überschreitung der Umweltqualitästnorm bei chemsichen Parametern in Messstellen LMSRSTATUS_DEBB - Stand der Maßnahmenumsetzung nach LAWA Die Tabellen können mit den zugehörigen Geometrien unter Nutzung der nachfolgenden Feldern verknüpft werden: EU_CD_RW, EU_CD_LW, EU_CD_GW bzw. EU_CD_WB
Derzeit werden die allgemeinen physikalisch-chemischen Parameter (ACP) in 72 Wasserkörpern und die flussgebietsspezifischen Schadstoffe in 73 Wasserkörpern untersucht. Die flussgebietsspezifischen Schadstoffe und die ACP werden zur unterstützenden Bewertung des ökologischen Zustandes der Seen herangezogen. Im Rahmen des chemischen Monitorings für die WRRL wird je See eine repräsentative Messstelle, welche zumeist an der tiefsten Stelle liegt, beprobt. Die ACP Gesamtphosphorkonzentration und Sichttiefe werden bei den Seen anhand von sogenannten Orientierungswerten beurteilt. Sie dienen in der Regel der Plausibilisierung der Bewertung anhand der biologischen Qualitätskomponenten. Die flussgebietsspezifischen Schadstoffe beziehen sich sowohl auf die Wasserphase als auch auf das Sediment. Sie gehen nach dem one out all out Prinzip in die Bewertung des ökologischen Zustandes ein. Ist eine Umweltqualitätsnorm überschritten, kann demnach der ökologische Zustand höchstens mäßig sein.
The European Water Framework Directive requires monitoring of bioaccumulative contaminants in fish to assess risks to human health by fish consumption and wildlife by secondary poisoning of predators. The list of priority substances for which environmental quality standards (EQSs) have been derived covers also perfluorooctane sulfonic acid (PFOS). No EQSs have yet been set for other per- and polyfluoroalkyl substances (PFAS) that are frequently detected in fish and of which some have a non-negligible risk potential compared to PFOS. As a case study, burdens for a set of PFAS were investigated for different fish species from five German freshwater sites and a Baltic Sea lagoon. PFAS concentrations were determined for composite samples of both, fillet and whole fish. On average, sum concentrations of C9-C14 perfluoroalkyl carboxylic acids, which will be banned in the European Union in 2023, reached 87% and 82% of the PFOS burdens in fillet and whole fish, respectively. The potential risk of several PFAS other than PFOS was assessed using a previously suggested relative potency factor approach, which is also applied for a proposed EQS revision. Only five of 36 fillet samples (mostly perch) exceeded the current EQS for PFOS alone. By contrast, all fillet samples exceeded the newly proposed draft EQS, which considers potential effects of further PFAS but also a lower tolerable intake value. Additionally, the dataset was used to derive fillet-to-whole fish conversion factors, which can be applied to assess human health risks by consumption of fillet if only whole fish concentrations are available. © 2021 The Authors
Die Fische in ausgewählten Fließgewässern Sachsens werden regelmäßig auf Schadstoffe nach lebensmittelrechtlichen Vorgaben und auf prioritäre Stoffe laut Oberflächengewässerverordnung (OgewV) bezüglich der Einhaltung von Umweltqualitätsnormen beprobt. Für die untersuchten Gewässer werden differenzierte Verzehrempfehlungen gegeben, die sowohl lokale Besonderheiten als auch Abhängigkeiten von Art und Größe berücksichtigen.
Am 11. Mai 2016 stimmte das Bundeskabinett der neuen Oberflächengewässerverordnung zu. Die Neufassung setzt EU-Recht in deutsches Recht um. Wichtige Vorgaben, um den Zustand der Gewässer zu bewerten und zu überwachen, werden aktualisiert und vereinheitlicht. Die Anforderungen an den guten Gewässerzustand werden damit europaweit angeglichen. Neu sind europaweit standardisierte Messkampagnen: für neue Stoffe, die in den Gewässern erst seit kurzer Zeit gefunden werden. Außerdem wird die Datenauswertung zur Gewässerbelastung verbessert. Die Liste der Stoffe, die in Gewässern gemessen werden müssen, wurde gekürzt. Demgegenüber wurden Umweltqualitätsnormen für 12 neue europaweit prioritäre Stoffe und 9 neue spezifische Stoffe festgelegt. Um der Nährstoffüberlastung der Übergangs- und Küstengewässer entgegenzuwirken, macht die Verordnung neue Vorgaben für Stickstoffverbindungen in Gewässer, die z. B. durch Düngung aus der Landwirtschaft stammen können. Nur wenn diese eingehalten werden, lässt sich der gute Zustand der Gewässer erreichen oder erhalten.
Hunderte Wirkstoffe und Abbauprodukte belasten Gewässer und Böden nahezu weltweit. Welches Ausmaß die Umweltbelastung mit Arzneimitteln erreicht, zeigt ein Forschungsprojekt im Auftrag des Umweltbundesamtes: Spuren von mehr als 630 verschiedenen Arzneimittelwirkstoffen sowie deren Abbauprodukte lassen sich in vielen Teile der Erde nachweisen. Sie sind in Gewässern, Böden, Klärschlamm und Lebewesen zu finden. Sehr häufig kommt das Schmerzmittel und der Entzündungshemmer Diclofenac vor. Der verwendete Wirkstoff wurde bisher in Gewässern von insgesamt 50 verschiedenen Ländern gemessen. Das Umweltprogramm UNEP der Vereinten Nationen prüft jetzt, ob „Arzneimittel in der Umwelt“ ein neues wichtiges Handlungsfeld im internationalen Chemikalienprogramm SAICM werden soll. Um dies zu unterstützen, initiieren das Umweltbundesamt (UBA) und das Bundesumweltministerium am 8. und 9. April 2014 einen internationalen Arzneimittel-Workshop in Genf. Thomas Holzmann, der amtierende Präsident des UBA: „Das Umweltbundesamt kann jetzt sicher belegen, dass Arzneimittelrückstände in der Umwelt weltweit ein relevantes Problem darstellen. Lösen können wir es nur global, indem wir die internationale Chemikaliensicherheit stärken. Zum Beispiel im Rahmen des internationalen Chemikalienprogramms SAICM. Mit unserem vierjährigen Forschungsprojekt, welches den internationalen Wissensstand zu Arzneimitteln in der Umwelt analysiert und transparent macht, leisten wir dazu einen Beitrag.“ Hohe Konzentrationen von Arzneimittelrückständen werden nicht nur in Gewässern und Böden der Industriestaaten gemessen, sondern auch in vielen Entwicklungs- und Schwellenländern. Die ersten Ergebnisse der UBA -Studie zeigen: bis heute wurden über 630 verschiedene Arzneimittelwirkstoffe und deren Abbauprodukte weltweit in der Umwelt nachgewiesen. 17 Wirkstoffe kamen in allen Regionen der Welt vor. Die meisten Daten liegen bisher zum Schmerzmittel und Entzündungshemmer Diclofenac vor. Der Wirkstoff wurde bisher in Gewässern von insgesamt 50 verschiedenen Ländern gemessen. In 35 dieser Länder überstiegen Messwerte die Gewässerkonzentration von 0,1 Mikrogramm pro Liter – ein Wert, der nahe der im Laborversuch ermittelten Konzentration liegt, bei der erste Schädigungen an Fischen beobachtet wurden. Dieser Wert war auch in der Diskussion als europäische „Umweltqualitätsnorm für Oberflächengewässer“. Die EU-Mitgliedstaaten haben sich nunmehr darauf geeinigt, die Konzentration dieses Stoffes in europäischen Gewässern regelmäßig zu messen und mögliche Gegenmaßnahmen bei Überschreitung zu entwickeln. Neben dem „Blockbuster“ Diclofenac zählen zu den weltweit meist verbreiteten Wirkstoffen auch das Antiepileptikum Carbamazepin, das Schmerzmittel Ibuprofen, das Pillen-Hormon Ethinylestradiol sowie das Antibiotikum Sulfamethoxazol. In den letzten Jahren hat sich die Datenlage zum Vorkommen von Arzneimitteln in der Umwelt für Deutschland und die anderen Staaten der EU sowie für Nordamerika und China deutlich verbessert. Wenig war dagegen zur weltweiten Situation bekannt. Während für die westeuropäischen Staaten zahlreiche Informationen und Veröffentlichungen vorliegen, sind es für Afrika, Lateinamerika und Osteuropa deutlich weniger. Im Besonderen gelangen Informationen zur Umweltbelastung in einigen Hauptproduktionsländern von Medikamenten wie Indien kaum an die Öffentlichkeit. Welche konkreten Maßnahmen den weltweiten Eintrag von Arzneimitteln in die Umwelt effektiv reduzieren können, diskutieren 60 Expertinnen und Experten aus Wissenschaft, Nichtregierungsorganisationen, Politik und Wirtschaft auf einem internationalen Workshop in Genf am 8. und 9. April. Das UBA-Forschungsprojekt soll dazu dienen, das Thema „Arzneimittel in der Umwelt“ im Umweltprogramm der Vereinten Nationen UNEP zu verankern, als Teil des „Strategischen Ansatz zum internationalen Chemikalienmanagement“ SAICM. Wird dies angenommen, folgen konkrete, weltweite Maßnahmen. Arzneimittel in der Umwelt Humanarzneimittel gelangen hauptsächlich über das häusliche Abwasser in die Umwelt. Sie werden nach der Einnahme vom Körper meist nicht vollständig abgebaut und wieder ausgeschieden. Kläranlagen können oft nicht alle Arzneimittelrückstände zurückhalten. Sind keine Kläranlagen vorhanden, gelangen die Wirkstoffe direkt ins Gewässer. Dort können sie Pflanzen und Tiere schädigen. Tierarzneimittel gelangen zum größten Teil über Gülle und Dung von behandelten Tieren in Böden und Gewässer. Über die langfristige Wirkung dieser Substanzen auf die Ökosysteme liegen bisher wenige Informationen vor. Laborexperimente und Freilandversuche zeigen aber negative Effekte wie reduziertes Wachstum, Verhaltensänderungen oder verminderte Vermehrungsfähigkeit bei Lebewesen in der Umwelt. Als besonders umweltrelevant, weil schon in geringen Konzentrationen toxisch für die Umwelt und oft auch sehr langlebig, haben sich Hormone, Antiparasitika und bestimmte Schmerzmittel herausgestellt. „Strategischer Ansatz zum internationalen Chemikalienmanagement“ SAICM SAICM ist ein internationales Programm für mehr Chemikaliensicherheit unter dem Dach der Vereinten Nationen. Sein Ziel ist es, bis zum Jahre 2020 negative Wirkungen von Chemikalien auf die menschliche Gesundheit und die Umwelt auf das geringstmögliche Maß zu mindern. Forschungsprojekt Das Forschungsprojekt „Global Relevance of Pharmaceuticals in the Environment “ wird vom IWW Rheinisch-Westfälisches Institut für Wasser aus Mülheim an der Ruhr und adelphi consult GmbH Berlin im Auftrag des Umweltbundesamtes durchgeführt. Dabei wird der aktuelle Stand des Wissens zum weltweiten Vorkommen von Arzneimitteln in der Umwelt systematisch analysiert. Das IWW wertete über 1000 wissenschaftliche Publikationen und andere Quellen von mehr als 70 verschiedenen Ländern aus. Darüber hinaus führte es Interviews mit Fachleuten aus verschiedenen Ländern durch. Eine erste Zusammenfassung dieser Daten ist nach Regionen unterteilt auf der Projektwebsite dargestellt. Das Forschungsprojekt startete in 2012 und läuft noch bis Mitte 2015.
Im Projekt wurden Empfehlungen zur Umsetzung der Wasserrahmenrichtlinie für das Stoffmonitoring in Fisch erprobt. Dazu wurden 2016/17 in ausgewählten Gewässern (Weser, Elbe, Unterhavel, Mosel, Oderhaff und Starnberger See) jeweils drei Fischarten unterschiedlicher Länge beprobt und Filet- und Restfischproben auf prioritäre Stoffe untersucht. Auf Basis der Ergebnisse wurden Faktoren für die Umrechnung von Stoffkonzentrationen in Filet- zu Ganzfischproben abgeleitet. Der Abschlussbericht bietet außerdem Handlungsempfehlungen, um geeignete Fischproben zu gewinnen und die Stoffkonzentrationen abschließend auszuwerten. Veröffentlicht in Texte | 96/2019.
Antifouling für Sportboote belastet Gewässer Das Wasser in deutschen Freizeithäfen ist teilweise stark belastet und gefährdet die natürliche Flora und Fauna der Gewässer. Auffällig sind die Schadstoffkonzentrationen so genannter Antifouling-Wirkstoffe. Diese übersteigen laut Stichproben des Umweltbundesamts (UBA) vielfach die Umweltqualitätsnorm der EU-Wasserrahmenrichtlinie. Die Antifouling-Wirkstoffe stammen im Wesentlichen aus den Schutzanstrichen für Sport- und Freizeitboote, die den Aufwuchs kleiner Tiere und Algen auf den Bootsrümpfen verhindern sollen. Die Stoffe können von der Schiffshaut ins Wasser übergehen und dort weiter auf Wasserpflanzen und -tiere einwirken. Das Umweltbundesamt rät dazu, Anstriche mit Antifouling-Wirkstoffen, insbesondere im Süßwasser, möglichst ganz zu vermeiden. Auf dem Ratzeburger See dürfen bereits seit Jahren Sportboote mit Antifouling-Anstrichen nicht mehr fahren. Mit seiner Untersuchung legt das Umweltbundesamt erstmalig eine gesamtdeutsche Übersicht zu Sport- und Freizeithäfen vor. Antifouling-Wirkstoffe werden in den Beschichtungen für Sportbootrümpfe vielfach eingesetzt. Sie wirken wie ein Pestizid und verhindern bei Booten den Aufwuchs von Algen, kleinen Muscheln und Krebsen. In der Regel sind diese Beschichtungen im ein- bis zwei-jährigen Rhythmus zu erneuern, da sich die Wirkstoffe mit der Zeit auswaschen. Eine besonders große Menge an Wirkstoffen gelangt in die Hafenbecken, wenn frisch gestrichene Bootskörper zu Wasser gelassen werden. Antifouling-Wirkstoffe können sich auch außerhalb der Sportboothäfen anreichern und die Fauna und Flora der Gewässer direkt schädigen. Die Wahrscheinlichkeit dafür ist in Deutschland hoch, denn fast 80 Prozent der deutschen Binnensportboothäfen sind zum angrenzenden Gewässer offen bzw. sind Bestandteil desselben. Das UBA ließ daher 50 Sportboothäfen von Flensburg bis zum Bodensee auf alle derzeit erlaubten Antifouling-Wirkstoffe stichprobenartig untersuchen. Im Visier stand dabei der Wirkstoff Cybutryn, der unter dem Handelsnamen Irgarol bekannt ist. In Antifouling-Anstrichen kommt er häufig vor. Irgarol ist ein Biozid kann unter anderem die Photosynthese von Pflanzen hemmen. Da sich Irgarol nur sehr langsam in der Umwelt abbaut, ist es in Gewässern lange wirksam. Bei der einmaligen Messung im Sommer 2013 lagen die Konzentrationen von Irgarol an 35 von 50 Sportboothäfen über der Umweltqualitätsnorm , den die EU- Wasserrahmenrichtlinie für diesen Stoff vorsieht. Der darin festgelegte Wert von 0,0025 Mikrogramm pro Liter darf im Jahresdurch-schnitt nicht überschritten werden. An fünf Standorten lagen die Messwerte sogar über der zulässigen Höchstkonzentration der Umweltqualitätsnorm für Irgarol. Diese beträgt 0,016 Mikrogramm pro Liter und darf nie überschritten werden. Ein Fünftel der untersuchten Standorte wies zudem erhöhte Kupfer- und Zinkkonzentrationen auf. Das Ergebnis bestätigt andere Untersuchungen, bei denen sich der Stoff sowohl in Küsten- als auch in Binnengewässern bereits in wirkungsrelevanten Konzentrationen nachweisen ließ. Eigene Untersuchungen des UBA haben gezeigt, dass für einen Teil der gemessenen Umweltkonzentrationen bereits negative Folgen für Wasserorganismen eintreten können. Das UBA rät generell davon ab, im Privatbereich Antifouling-Anstriche zu verwenden. Insbesondere an vielen Süßwasserstandorten können Bootsrümpfe auch ohne Antifouling-Wirkstoffe in einem guten Zustand bleiben. Wer solche Schutzanstriche dennoch verwenden möchte, sollte darauf achten, dass sich die darin enthaltenen Wirkstoffe schnell in der Umwelt abbauen. Mehrere europäische Länder haben bereits Anwendungsbeschränkungen oder Verbote von irgarolhaltigen Bootsanstrichen durchgesetzt, beziehungsweise ein generelles Anwendungsverbot für biozidhaltige Antifouling-Anstriche in Binnengewässern erlassen. Dazu zählen Dänemark, Schweden und Großbritannien. In Deutschland gelten bisher nur vereinzelt regionale Anwendungsverbote für diese Art von Anstrichen, zum Beispiel in Schleswig-Holstein am Ratzeburger See. Aktuelle Bestandszahlen von Sportbooten wurden durch das Umweltbundesamt anhand von Luftbildern erhoben. Insgesamt wurde bundesweit ein Gesamtbestand von ca. 206.000 Liegeplätzen in 3091 Sportboothäfen erfasst. Nicht eingerechnet wurden Kleinsthäfen unter sechs Booten und Einzelliegeplätze. Deren Anzahl wird auf max. 20.000 geschätzt. Die Zulassung von Unterwasserbeschichtungen mit biozidhaltigen Antifouling-Wirkstoffen unterliegt EU-weit der Biozid-Verordnung (EU) Nr. 528/2012. Um solche Produkte zu vermarkten, müssen Hersteller oder Importeure ein zwei-stufiges Zulassungsverfahren erfolgreich abschließen: Erstens muss der im Biozid-Produkt enthaltene Wirkstoff auf EU-Ebene grundsätzlich für die vorgesehene Verwendung zugelassen werden. Zweitens muss das Biozid-Produkt selbst entweder im Mitgliedstaat oder auf Unionsebene zugelassen sein, bevor es in den Verkehr gebracht und verwendet werden darf. In der 1. Stufe ist daher ein umfangreiches Dossier zum Wirkstoff vorzulegen, in dem u.a. Stoffeigenschaften, Verhalten in der Umwelt und Wirkung auf Mensch und Organismen dokumentiert werden. Auf Grundlage dieses Dossiers führt ein EU-Mitgliedsstaat federführend eine Risikobewertung des Wirkstoffs durch. Auf der Grundlage dieser Bewertung entscheidet die EU-Kommission über die Zulassung des Wirkstoffs. Zentraler Bestandteil für den Umweltbereich ist u.a. ein Vergleich der erwarteten Umweltkonzentration im Wasser (z.B. in Sportboothäfen) mit den aus ökotoxikologischen Tests abgeleiteten Wirkungsschwellen an Organismen (z.B. Algen, Wasserflöhe oder Fische). Werden insgesamt die Risiken für Mensch und Umwelt als gering bewertet und erzielt der Wirkstoff seine bestimmungsgemäße Wirkung, so kann er prinzipiell in Antifouling-Produkten eingesetzt werden, die dann in der 2. Stufe national zugelassen werden müssen. Bisher ist noch kein Antifoulingprodukt zugelassen. Alle Antifoulings sind derzeit noch aufgrund von Übergangsregeln ungeprüft auf dem Markt.
Linkage between the different legal instruments must be strengthened In May 2021, the European Commission presented the Zero Pollution Action Plan, which aims to show how air, water and soil can become pollution-free. The Zero Pollution Ambition is an important building block of the European Green Deal, which is intended to minimise environmental pollution. The German Environment Agency welcomes this initiative because it puts pollution prevention and reduction on a par with climate and biodiversity protection. Nevertheless, the Action Plan must be expanded to include a cross-regulatory approach that considers the entire life cycle of pollution, including its most important sources and effects on humans and the environment. With the Scientific Opinion Paper “The Zero Pollution Action Plan as a chance for a cross-regulatory approach to pollution prevention and reduction”, the German Environment Agency has now developed proposals on how a systemic approach to pollution prevention and reduction could be designed. One example of the existing deficits of policy coordination: After 20 years of the Water Framework Directive, the chemical status of our rivers is still not good. For example, mercury levels exceed the corresponding environmental quality standard in all rivers in Germany. One reason for this is the slow or missing feedback from water monitoring to substance regulations, such as REACH . Thus, when pesticides or other chemicals are detected in water bodies, regulation should actually be tightened until a good status is achieved. To accomplish this, the linkage between the different legal instruments must be strengthened. The German Environment Agency’s new Scientific Opinion Paper provides suggestions for policy-makers at EU level on how, among other things, such interfaces can be improved. The central element of German Environment Agency’s cross-regulatory approach is the Zero Pollution Cycle that integrates the following aspects: The goal of the Zero Pollution Ambition to reduce the negative impacts of human activities on the environment, health and well-being to zero will always remain a moving target. Technologies, products, services and chemical applications are constantly evolving. They will present us with new challenges and generate new pollution. Therefore, continuous innovative regulatory, technological and social responses from business, society and policy makersare needed. The scope and specific goals of actions will thus have to adapt continuously. For this reason, the Zero Pollution Ambition is best understood as a long-term programme. Nevertheless, the EU and its Member States need to step up their efforts today to achieve the current targets of the Zero Pollution Ambition.
Origin | Count |
---|---|
Bund | 107 |
Land | 94 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 30 |
Kartendienst | 7 |
Text | 92 |
Umweltprüfung | 6 |
unbekannt | 48 |
License | Count |
---|---|
geschlossen | 145 |
offen | 34 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 167 |
Englisch | 33 |
unbekannt | 4 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 20 |
Datei | 11 |
Dokument | 58 |
Keine | 80 |
Unbekannt | 2 |
Webdienst | 8 |
Webseite | 66 |
Topic | Count |
---|---|
Boden | 140 |
Lebewesen & Lebensräume | 157 |
Luft | 131 |
Mensch & Umwelt | 184 |
Wasser | 175 |
Weitere | 174 |