API src

Found 174 results.

Related terms

FZT 15: Der Ozean im Erdsystem; Ocean Margins - Research Topics in Marine Geosciences for the 21st Century, Sub project: Infrastructure, Support and Central Management

The research centre 'Ocean Margins' at the University of Bremen was established in July 2001 to geoscientifically investigate the transitional zones between the oceans and the continents. The work of the research centre is a cooperative effort, with expertise provided by the geosciences department and other departments of the university, as well as by MARUM (Center for Marine Environmental Sciences), the Alfred Wegener Institute for Polar and Marine Research, the Max Planck Institute for Marine Microbiology, the Center for Marine Tropical Ecology, and the Senckenberg Research Institute in Wilhelmshaven. Funded by the DFG, the studies focus on four main research fields: Paleoenvironment, Biogeochemical processes, Sedimentation Processes, and Environmental Impact Research. The term 'Ocean Margin' encompasses the region from the coast, across the shelf and continental slope, to the foot of the slope. Over 60 percent of the world's population live in coastal regions. These people have a long history of exploitation of coastal waters, including the recovery of raw materials and food. Human activity has recently been expanding ever farther out into the ocean, where the ocean margins have become more attractive as centers for hydrocarbon exploration, industrial fishing, and other purposes. The research themes of the centre range from environmental changes in the Tertiary to the impact of recent coastal construction, and from microbial degradation in the sediment to large-scale sediment mass wasting along continental margins. New full professorships and junior professorships have been established within the framework of this research centre. In addition to the primary research activities, a research infrastructure will be made available to outside researchers. Graduate education and the public understanding of science also play an important role. In the course of the first two rounds of the Excellence Initiative, the Research Centre was promoted to that status of a cluster of excellence, which has increased the amount of funding it receives up to the average amount of 6.5 million per annum received by clusters of excellence.

Modellierungsdaten durchschnittlicher sommerlicher Hitzestress für Freiburg i. Br.

Modellierungsdaten zur mittleren Anzahl an Stunden mit Hitzestress pro Jahr (Mittelwert der Jahre 2019-2022). Hitzestress wird hierbei mit dem Universal Thermal Climate Index (UTCI) dargestellt und 26°C UTCI als Grenzwert genutzt. Der UTCI kombiniert Daten der Lufttemperatur, -feuchte, Windgeschwindigkeit und Strahlung zu einem Werte der "gefühlten" Temperatur. Alle Variablen des UTCI wurden mit Hilfe von KI auf unterschiedlichen räumlichen Auflösungen berechnet und gegen ein Messnetz validiert. Mehr Informationen zu den Modellen und Daten unter https://doi.org/10.5194/gmd-17-1667-2024. Die Berechnung der Daten erfolgte 2024 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Meteorologie, Universität Freiburg".

Wasserstände und Fließgeschwindigkeiten der Jährlichkeit 100 für ausgewählte Gewässer in Freiburg i. Br.

Der Datensatz enthält die - Maximale Wasserstände der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen - Maximale Fließgeschwindigkeiten der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen Der Datensatz entstammt aus dem Projekt I4C, des Leistungszentrums Nachhaltigkeit, der Universität Freiburg und weiteren Projektpartnern und wird nicht regelmäßig aktualisiert. Es handelt sich um Ergebnisse eines Forschungsprojektes ohne rechtliche oder planerische Überprüfung. Die Berechnung der Daten erfolgte 2023 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Hydrologie, Universität Freiburg". Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Digitales Geländemodell mit Gebäuden, Landnutzung, Versiegelungsgrad, Bodeneigenschaften (nFK, LK, PWP, ks), Leitfähigkeit Hydrogeologie, Mittlerer Grundwasserflurabstand, Gewässernetz. Ereignis-Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Bodenfeuchte für verschiedene Unterschreitungswahrscheinlichkeiten im Sommerhalbjahr, Anfangsbetonte Modell-Niederschlags-Summen verschiedener Jährlichkeiten und Dauerstufen. Für das Ereignis: Niederschlag vom 25.06.2016, Bodenfeuchte zu Beginn des Niederschlags vom 25.06.2016. Modellierung: Abflussbildung mit dem Modell RoGeR in 5-Minuten-Auflösung. Hydraulische Modellierung mit auf Basis der 5-Minuten-Oberfllächen-Abflüsse aus RoGeR mit den Modell Ro_Dyn. Ergebnisse (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Maximale zu erwartende Wasserstände und Fleißgeschwindigkeiten mit einem statistischen Wiederkehr-Intervall von 100 Jahren für jede2*2 m²-Rasterzelle. Für das Ereignis: Maximale für das Ereignis modellierten Wasserstände und Fleißgeschwindigkeiten für jede2*2 m²-Rasterzelle.

Vorhersage der Stabilität von Lebensgemeinschaften aus dem Beitrag einzelner Arten zu Resistenz, Resilienz und Erholung

Ökologische Stabilität ist der Schlüssel zur Vorhersage der Folgen von Umweltveränderungen, denn sie umfasst Aspekte der Antwort auf verschiedene Störungsszenarien, zum Beispiel die Fähigkeit, Veränderungen zu widerstehen, diese zu absorbieren oder sich von ihnen zu erholen. Die wichtigsten Fortschritte bei der wissenschaftlichen Bewertung der ökologischen Stabilität in jüngster Zeit ergaben sich aus i) der Anerkennung der mehrdimensionalen Natur der Stabilität, ii) der Unterscheidung zwischen der Stabilität funktioneller Eigenschaften eines Ökosystems und der Stabilität der Zusammensetzung der Gemeinschaft und iii) der Erkenntnis der Bedeutung der räumlichen Dynamik für das Verständnis der lokalen Stabilitätseigenschaften. Trotz dieser Fortschritte wird unser Verständnis der Stabilität (und ihrer Verwendung in den Ökologie- und Umweltwissenschaften) immer noch durch unsere Unfähigkeit behindert, die Stabilität der Gemeinschaft anhand artspezifischer Leistungen und Merkmale vorherzusagen. Das Verständnis der Beiträge der Arten zur Stabilität ist das Hauptziel dieses Projektantrages. Wir werden Metriken verfeinern und testen, die die Reaktionen der Arten auf sich ändernde Umgebungen erfassen, und diese Metriken verwenden, um die Stabilität von Lebensgemeinschaften anhand der Leistung einzelner Arten vorherzusagen und die vorhergesagte Stabilität mit der beobachteten zu vergleichen. Die Arbeit ist in vier Arbeitspakete unterteilt, die Simulationen und Datenanalyse (WP 1) kombinieren mit drei experimentellen Arbeitspaketen zunehmender Komplexität (WP2-4). Die Metaanalyse in WP 1 verwendet kürzlich entwickelte Methoden zur Zerlegung von Stabilität, um Arten zu identifizieren, die zur Stabilität oder Verwundbarkeit in verschiedenen Arten von Ökosystemen und Organismen beitragen. Für die Experimente werden marine Planktongemeinschaften unterschiedlichen Trends und Temperaturschwankungen ausgesetzt sein. Diese Experimente werden von einem Bottom-up-Ansatz ausgehen, bei dem Arten mit bekannten Reaktionen zu Artenpaaren und Zusammenstellungen mit geringer Diversität kombiniert werden, wobei die erwartete mit der beobachteten Stabilität verglichen wird (WP 2). In WP 3 werden wir mithilfe eines Metacommunity-Setups testen, wie die Vorhersagbarkeit von Stabilitätsaspekten wie Resistenz, Resilienz, Erholungsfähigkeit und zeitliche Stabilität von der Konnektivität im Raum abhängt. Schließlich werden wir Mesokosmen verwenden, um zu testen, ob dieselben Merkmale die Stabilität der Phytoplanktongemeinschaft in Abwesenheit oder Gegenwart eines generalistischen Zooplankton-Verbrauchers beeinflussen.

Einfluss benachbarter Küstensysteme auf die Erosion von Dünen Systemen (MoDECS)

Küstendünen haben hohe ökonomische Werte und ökologische Funktionen und bieten einen natürlichen Küstenschutz gegen die See, besonders bei Stürmen. Im Unterschied zu Strand-Dünen Systemen an ausgedehnten gleichmäßigen Küsten führen benachbarte Elemente der Küstenmorphologie (Ebbdeltas, Tiderinnen) zu einer komplexen morphologischen Reaktion der Dünen auf veränderte Randbedingungen. Im Rahmen des Projekts sollen die Auswirkungen von Stürmen auf drei unterschiedliche Dünensysteme untersucht werden: 1) Isolierte Dünensysteme (IDS), 2) Barriere Insel Dünensystem (BDS) und 3) Ästuarine Dünensysteme (EDS). Ein neuartiger Ansatz verwendet eine schematisierte Darstellung der exemplarischen Dünensysteme von Hütelmoor (IDS), Norderney (BDS) in Deutschland und der Sefton-Küste (EDS) in Großbritannien, die durch unterschiedliche Exposition und Energieeintrag auszeichnen (Gezeitenbereich, Wellenhöhe). Numerische Modellexperimente mit XBeach-, Delft3D- und SWAN-Modellen werden mit unterschiedlichen Schematisierungen mit zunehmender Komplexität der Dünensysteme durchgeführt. Im ersten Jahr des Projekts wird zunächst eine morphodynamisch relevante Sturmdefinition für die numerischen Experimente erstellt und zur Festlegung der zuvor eingetretenen Sturmereignisse an den drei Dünensystemen eingesetzt. Dann werden Strandprofile modelliert und analysiert, um die Erosionsempfindlichkeit auf die topographischen Parameter wie Dünenneigung und Dünenbreite zu untersuchen. Im zweiten Jahr werden flächenhafte Simulationen durchgeführt, um die Auswirkung von Stürmen und den Einfluss der erwähnten morphologischen Elemente zu untersuchen. Im dritten Jahr wird ein Modell eines BDS für langperiodische (dekadische) Simulationen entwickelt. Dieses wird dann für die Auswirkungen von zwei Klimawandel-Szenarien (Meeresspiegelanstieg und Sturmhäufigkeit) auf die Erosion an den Dünen zu untersuchen. Die Forschungsergebnisse werden über Zeitschriftenartikel (Climatic Change) und Tagungsberichte veröffentlicht.Die Dauer des Projekts beträgt 3 Jahre und es soll am Zentrum für Marine Umweltwissenschaften (MARUM) der Universität Bremen durchgeführt werden. Die Forschung wird in enger Zusammenarbeit mit internen und externen Kollegen durchgeführt (MARUM: Bremen, NOC: Liverpool, UNESCO-IHE: Delft, IOW: Warnemünde und CRS: Norderney). Zusätzlich sollen jährliche Treffen mit Experten einberufen werden, um Erkenntnisse zu diskutieren und Feedback zu erhalten.

Elemente eines methodischen Baukastens für das Umweltzeichen Blauer Engel

Die stetige Kenntniszunahme in den Umweltwissenschaften und die zunehmende Differenzierung der Umweltpolitik und -regelungen erfordern eine permanente Aktualisierung der Bewertungsmaßstäbe für das Umweltzeichen Blauer Engel. Dabei müssen zum einen die spezifischen Eigenschaften bestimmter Produkte und Dienstleistungen berücksichtigt werden und zum anderen die Konsistenz des gesamten Umweltzeichenprogramms gewahrt werden. Weiterhin steigen auch die Glaubwürdigkeits-Anforderungen an ein Umweltzeichenprogramm einschließlich seiner Zertifizierungsstelle kontinuierlich, so dass auch strukturell eine permanente Modernisierung des Blauer Engel erforderlich ist. Ziel des Vorhabens ist es, für bestimmte Schritte bei der Kriterienentwicklung ('Bausteine') Anleitungen einschließlich geeigneter Schulungsmaterialen zu entwickeln, um so ein einheitliches Vorgehen innerhalb des Umweltzeichenprogramms zu gewährleisten und (neuen) Mitarbeitenden des UBA, Mitarbeitenden der Zertifizierungsstelle und Forschungsnehmern des UBA den aktuellen Stand zu vermitteln. Stetige Fortbildungen für Mitarbeitende werden ebenfalls im Rahmen von Konformitätsbewertungsnormen für Zertifizierungsstellen gefordert. Themen von Kriterienbausteinen sind beispielsweise Vorgaben für die Verwendung bestimmter Rohstoffe (Holz, Pigmente, Mineralien, etc.), Erstellung von Screening Ökobilanzen, Techniken und Kriterien der Emissionsminderung, Nachweisführungen durch akkreditierte Labore, Bestimmung von Umweltentlastungspotenzialen, Standards zum Vergleich mit anderen Umweltzeichen. Das Vorhaben sollte ausschließlich in Eigenforschung durchgeführt werden, da die zahlreichen Abstimmungsschritte und der regelmäßige Ausstauch mit Fachgebiet III 1.3 und den vielen unterschiedlichen Facheinheiten Voraussetzung für eine erfolgreiche Durchführung ist. Ergebnis soll ein Leitfaden mit ausgewählten Bausteinen für die Kriterienentwicklung beim Umweltzeichen Blauen Engel einschließlich Schulungsmaterialien sein.

Transfer und Vermittlung von Wissen für umweltbewusste Jugendliche am Beispiel der Luftqualität, Teilvorhaben: Kompetenzentwicklung und Feedback

Gerätezentrum Umweltanalytik

Die Herausforderungen einer nachhaltigen Entwicklung erfordern Antworten auf komplexe Umweltprobleme wie Klimawandel, Verlust an Biodiversität, Verfügbarkeit von sauberem Wasser und biobasierten Materialien für die Kreislaufwirtschaft. Die jüngsten Fortschritte bei der Entwicklung analytischer Technologien bieten vielfältige Möglichkeiten, sich diesen Problemen erfolgreich zu stellen. Diese Entwicklungen gehen jedoch mit einer hohen Spezialisierung einher und bergen die Gefahr einer starken Fragmentierung der verschiedenen Disziplinen der Umweltwissenschaften. Gleichzeitig steigen die Kosten für den Betrieb der analytischen Instrumente kontinuierlich an. Die Etablierung eines Gerätezentrums (GZ) ‘Umweltanalytik’ an der TU Dresden (TUD) soll diese starke Fragmentierung überwinden und damit die Verfügbarkeit und die Zugänglichkeit zu modernen analytischen Instrumenten für Wissenschaftler der TUD und deren externer Partner verbessern. Das angestrebte GZ umfasst sehr innovative und äußerst komplexe Gerätesysteme für die (i) Analyse stabiler Isotope zur Prozessforschung, die Nutzung (ii) spektroskopischer Verfahren zur Identifizierung molekularer Strukturen organischer Substanzen und die Nutzung (iii) der Rasterelektronenmikroskopie (Environmental Scanning Electron Microscopy) zur Erforschung von Mikro- und Nanostrukturen. Diese Kerntechnologien werden ergänzt durch eine breite Palette an unterstützenden analytischen Verfahren, womit insgesamt ein großes Potential für eine integrative Forschung in den Umweltwissenschaften besteht. Die integrative Datenanalyse wird ein weiterer Bestandteil des angestrebten GZ sein. Es wird ein Managementsystem entwickelt, das einen einfachen Zugang und eine effiziente gemeinsame und kostengünstige Nutzung aller Instrumente ermöglicht. Dies ist Voraussetzung einer tiefgreifenden Integration der Umweltwissenschaften und wird gleichzeitig zu einem fruchtbaren Austausch von Wissenschaftlern unterschiedlicher Disziplinen führen. Der Aufbau des GZ wird zu neuen Qualitätsstandards in der Umweltanalytik beitragen. Das GZ geht weit über das Angebot der Nutzung analytischer Kapazitäten hinaus. Die Nutzer werden bei der Auswahl der am besten geeignetsten Kombination analytischer Verfahren wissenschaftlich fundiert beraten. Außerdem wird eine gemeinsame integrative Auswertung bei komplexen Umweltdaten angeboten. Durch das GZ werden besonders interessierten Studenten und jungen Forschern Qualifizierungskurse angeboten. Damit wird das GZ der interdisziplinären Spitzenforschung in den Umweltwissenschaften an der TUD einen starken Impuls verleihen. Externe Partner erhalten mehr Möglichkeiten zur erfolgreichen Zusammenarbeit mit ihren Partnern an der TUD. Dies wird zur Generierung neuer Forschungsideen und deren Umsetzung in wissenschaftlichen Projekten führen. Damit wird das Gerätezentrum zu wissenschaftlich exzellenten Lösungen der komplexen Umweltprobleme beitragen, mit denen unserer Gesellschaft konfrontiert ist.

Hochauflösendes Flugzeitmassenspektrometer mit UHPLC

Bei dem beantragten Gerät handelt es um die Kombination eines Hochleistungsflüssigkeitschromatographie-Gerätes (Ultra High Performance Liquid Chromatography, UHPLC) zur Stofftrennung mit einem hochauflösenden Massenspektrometer (Kopplung eines Quadrupol-Systems mit einem Flugzeitmassenspektrometer, „Time of Flight“, QTOF-MS, im folgendem kurz als HR-MS bezeichnet) neuester Bauart. Das Gerät soll zur Strukturaufklärung unbekannter organischer Spurenstoffe in Umweltproben und anderen Matrices eingesetzt werden. Die Forschungen der Antragsteller beschäftigen sich umfassend mit dem Auftreten, den Eigenschaften und dem Verhalten von überwiegend anthropogen in den Wasserkreislauf eingetragenen Chemikalien sowie der Verfolgung von biotischen und abiotischen Transformationsprozessen in technischen und natürlichen Systemen. Die Verfügbarkeit eines hochauflösenden Massenspektrometers ist für die Charakterisierung von Abbaupfaden und für die Identifizierung von Produkten, deren Umweltrelevanz ebenfalls aufgeklärt werden muss, unabdingbar. Weiterhin wird das Gerät zur Identifizierung von anthropogenen Spurenschadstoffen in allen Ebenen des globalen Wasserkreislaufs benötigt, wobei als methodischer Ansatz u.a. ein „Non-Target Screening“ verwendet werden soll. Im Rahmen diverser aktueller und geplanter Forschungsarbeiten müssen für eine Vielzahl von Umweltchemikalien deren Metaboliten und Transformationsprodukte sicher identifiziert werden. Das angestrebte hochauflösende LC-MS-System kann außerdem zur exakten Quantifizierung von organischen Spurenstoffen eingesetzt werden, was bei den Antragstellern erhebliche Bedeutung besitzt. Die geplante Anschaffung bewirkt eine weitere Steigerung der bereits bestehenden hochwertigen und vielschichtigen Forschung und führt zu einer signifikanten Erhöhung der Wettbewerbsfähigkeit sowie Attraktivität hinsichtlich des wissenschaftlichen Nachwuchses aller beteiligten Institutionen der Fakultät Umweltwissenschaften. Ein HR-MS ist bislang an der gesamten Fakultät nicht vorhanden.

Studienlandschaft Schwingbach

Das Einzugsgebiet des Schwingbachs in der Großgemeinde Hüttenberg wird seit Anfang 2009 als Studienlandschaft für Studierende des Fachbereichs Agrarwissenschaften und Umweltmanagement der Justus-Liebig-Universität Gießen genutzt. Insbesondere die Professuren Bodenkunde und Bodenerhaltung , Ressourcenmanagement , sowie Landschaftsökologie und Landschaftsplanung werden Lehrveranstaltungen in der Studienlandschaft durchführen sowie Bachelorund Masterarbeiten in diesem Raum anfertigen lassen. Dabei besteht durch Zusammenarbeit der drei Professuren ein interdisziplinärer Lehransatz, der ein sehr breites Spektrum der Umweltwissenschaften abdeckt. Praxisnahe fachübergreifende Themen, insbesondere zur Bedeutung unterschiedlicher Landnutzungen für Ökosystemdienstleistungen, werden z. B. von studentischen Projektgruppen bearbeitet. Die Studierenden der Justus-Liebig-Universität Gießen erlangen durch das Arbeiten in der Gruppe Teamfähigkeit, Organisationstalent sowie Fachwissen, um sich im späteren Berufsleben selbständig behaupten zu können. Zur Unterstützung der Lehre und Forschung werden Untersuchungsflächen, Bodenprofile, Messgeräte sowie ein Landschafts-Lernpfad eingerichtet. Vegetationsökologische, hydrologische, meteorologische, bodenphysikalische und bodenchemische Daten sowie landschaftsökologische Aspekte der kulturhistorischen und landwirtschaftlichen Nutzung dieser Landschaft werden erfasst, dokumentiert und umweltwissenschaftlich bewertet. So wird eine ganzheitliche Betrachtung der ökologischen Zusammenhänge dieser Landschaft ermöglicht. Es bietet sich an, auch der interessierten Öffentlichkeit Informationen über die Lehre und Forschung an der Justus-Liebig-Universität zugänglich zu machen. Hier ist zugänglich machen im Sinne von Wissensvermittlung zu verstehen. Der oben genannte Landschafts-Lernpfad soll auch diesem Zweck dienen. Das Konzept eines solchen Lernpfades beruht darauf, dass neben der rationalen Komponente (Fachwissen) eine emotionale Komponente (sinnliche Wahrnehmung der Natur) wichtig ist, um die Ziele der Umweltbildung zu erreichen. Ziel des Lernpfades ist es, Informationen zu geben und für die Wahrnehmung der Umgebung zu sensibilisieren. Die Informationsvermittlung muss interessant und ansprechend sein. Anstelle langer belehrender Texte sollte sie wechselseitig gestaltet sein. Benutzer und Betrachter können selbst tätig werden. Über interaktive Wissensvermittlung, sinnliche Wahrnehmung und schöne Eindrücke , setzt sich der Mensch handelnd mit der Umgebung auseinander. Ein Lernpfad soll für Natur und Umwelt sensibilisieren und dabei Spaß machen. Schon vor 200 Jahren forderte Johann Heinrich Pestalozzi das Lernen mit Kopf, Herz und Hand . So werden die drei Lernziele der Umweltbildung - Handlungskompetenz, Handlungsbereitschaft und Handlungsausführung - erreicht und damit die Grundvoraussetzungen für einen erfolgreichen Natur- und Umweltschutz geschaffen. (Text gekürzt)

1 2 3 4 516 17 18