Der Datensatz enthält die - Maximale Wasserstände der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen - Maximale Fließgeschwindigkeiten der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen Der Datensatz entstammt aus dem Projekt I4C, des Leistungszentrums Nachhaltigkeit, der Universität Freiburg und weiteren Projektpartnern und wird nicht regelmäßig aktualisiert. Es handelt sich um Ergebnisse eines Forschungsprojektes ohne rechtliche oder planerische Überprüfung. Die Berechnung der Daten erfolgte 2023 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Hydrologie, Universität Freiburg". Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Digitales Geländemodell mit Gebäuden, Landnutzung, Versiegelungsgrad, Bodeneigenschaften (nFK, LK, PWP, ks), Leitfähigkeit Hydrogeologie, Mittlerer Grundwasserflurabstand, Gewässernetz. Ereignis-Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Bodenfeuchte für verschiedene Unterschreitungswahrscheinlichkeiten im Sommerhalbjahr, Anfangsbetonte Modell-Niederschlags-Summen verschiedener Jährlichkeiten und Dauerstufen. Für das Ereignis: Niederschlag vom 25.06.2016, Bodenfeuchte zu Beginn des Niederschlags vom 25.06.2016. Modellierung: Abflussbildung mit dem Modell RoGeR in 5-Minuten-Auflösung. Hydraulische Modellierung mit auf Basis der 5-Minuten-Oberfllächen-Abflüsse aus RoGeR mit den Modell Ro_Dyn. Ergebnisse (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Maximale zu erwartende Wasserstände und Fleißgeschwindigkeiten mit einem statistischen Wiederkehr-Intervall von 100 Jahren für jede2*2 m²-Rasterzelle. Für das Ereignis: Maximale für das Ereignis modellierten Wasserstände und Fleißgeschwindigkeiten für jede2*2 m²-Rasterzelle.
The research centre 'Ocean Margins' at the University of Bremen was established in July 2001 to geoscientifically investigate the transitional zones between the oceans and the continents. The work of the research centre is a cooperative effort, with expertise provided by the geosciences department and other departments of the university, as well as by MARUM (Center for Marine Environmental Sciences), the Alfred Wegener Institute for Polar and Marine Research, the Max Planck Institute for Marine Microbiology, the Center for Marine Tropical Ecology, and the Senckenberg Research Institute in Wilhelmshaven. Funded by the DFG, the studies focus on four main research fields: Paleoenvironment, Biogeochemical processes, Sedimentation Processes, and Environmental Impact Research. The term 'Ocean Margin' encompasses the region from the coast, across the shelf and continental slope, to the foot of the slope. Over 60 percent of the world's population live in coastal regions. These people have a long history of exploitation of coastal waters, including the recovery of raw materials and food. Human activity has recently been expanding ever farther out into the ocean, where the ocean margins have become more attractive as centers for hydrocarbon exploration, industrial fishing, and other purposes. The research themes of the centre range from environmental changes in the Tertiary to the impact of recent coastal construction, and from microbial degradation in the sediment to large-scale sediment mass wasting along continental margins. New full professorships and junior professorships have been established within the framework of this research centre. In addition to the primary research activities, a research infrastructure will be made available to outside researchers. Graduate education and the public understanding of science also play an important role. In the course of the first two rounds of the Excellence Initiative, the Research Centre was promoted to that status of a cluster of excellence, which has increased the amount of funding it receives up to the average amount of 6.5 million per annum received by clusters of excellence.
Modellierungsdaten zur mittleren Anzahl an Stunden mit Hitzestress pro Jahr (Mittelwert der Jahre 2019-2022). Hitzestress wird hierbei mit dem Universal Thermal Climate Index (UTCI) dargestellt und 26°C UTCI als Grenzwert genutzt. Der UTCI kombiniert Daten der Lufttemperatur, -feuchte, Windgeschwindigkeit und Strahlung zu einem Werte der "gefühlten" Temperatur. Alle Variablen des UTCI wurden mit Hilfe von KI auf unterschiedlichen räumlichen Auflösungen berechnet und gegen ein Messnetz validiert. Mehr Informationen zu den Modellen und Daten unter https://doi.org/10.5194/gmd-17-1667-2024. Die Berechnung der Daten erfolgte 2024 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Meteorologie, Universität Freiburg".
Angesichts sich wandelnder Randbedingungen in Umwelt und Gesellschaft werden sich die Häufigkeiten, Intensitäten und Auswirkungen von Naturgefahren ebenfalls ändern. Dies ist von besonderer Bedeutung für Regionen, in denen Risiken durch Naturgefahren bewältigt, gesteuert und gemindert werden müssen. Dafür möchte das Graduiertenkolleg 'Naturgefahren und Risiken in einer Welt im Wandel' (NatRiskChange) die Wissensgrundlage verbessern: Hauptziel ist es, Methoden zu entwickeln, die die Analyse, Quantifizierung und Vorhersage von transienten Gefahren und Risiken verbessern, indem Wissen und Methoden zwischen Systemanalyse, Geo- und Umweltwissenschaften sowie Risikoforschung aktiv ausgetauscht werden. Die mathematisch orientierten Wissenschaftler bringen statistische Methoden, insbesondere Bayessche Statistik, die Theorie der dynamischen Systeme mit einem Schwerpunkt auf nicht-linearen Prozessen und Chaos sowie Rekurrenzplots und andere innovative Methoden zur Analyse geophysikalischer Zeitreihen ein. Die Geo- und Umweltwissenschaften steuern hingegen für verschiedene Naturgefahren Wissen über zugrundeliegende Mechanismen und Prozesse des Wandels bei, inklusive regionaler Besonderheiten, Interaktionen zwischen Gefahren und Vulnerabilitäten. Diese interdisziplinäre Forschung von NatRiskChange begann im Oktober 2015 und wird durch ein Qualifizierungsprogramm in den Bereichen der Statistik, Daten- und Risikoanalyse begleitet. Lehrkonzept und Forschungsprogramm ergänzen sich gegenseitig und sind tief in der Expertise der teilnehmenden Institutionen aus Potsdam und Berlin verankert, um den Weg für neue Forschungsstränge zur Quantifizierung von Veränderungen in Geo-, Hydro- und sozio-ökologischen Systemen zu ebnen.
Küstendünen haben hohe ökonomische Werte und ökologische Funktionen und bieten einen natürlichen Küstenschutz gegen die See, besonders bei Stürmen. Im Unterschied zu Strand-Dünen Systemen an ausgedehnten gleichmäßigen Küsten führen benachbarte Elemente der Küstenmorphologie (Ebbdeltas, Tiderinnen) zu einer komplexen morphologischen Reaktion der Dünen auf veränderte Randbedingungen. Im Rahmen des Projekts sollen die Auswirkungen von Stürmen auf drei unterschiedliche Dünensysteme untersucht werden: 1) Isolierte Dünensysteme (IDS), 2) Barriere Insel Dünensystem (BDS) und 3) Ästuarine Dünensysteme (EDS). Ein neuartiger Ansatz verwendet eine schematisierte Darstellung der exemplarischen Dünensysteme von Hütelmoor (IDS), Norderney (BDS) in Deutschland und der Sefton-Küste (EDS) in Großbritannien, die durch unterschiedliche Exposition und Energieeintrag auszeichnen (Gezeitenbereich, Wellenhöhe). Numerische Modellexperimente mit XBeach-, Delft3D- und SWAN-Modellen werden mit unterschiedlichen Schematisierungen mit zunehmender Komplexität der Dünensysteme durchgeführt. Im ersten Jahr des Projekts wird zunächst eine morphodynamisch relevante Sturmdefinition für die numerischen Experimente erstellt und zur Festlegung der zuvor eingetretenen Sturmereignisse an den drei Dünensystemen eingesetzt. Dann werden Strandprofile modelliert und analysiert, um die Erosionsempfindlichkeit auf die topographischen Parameter wie Dünenneigung und Dünenbreite zu untersuchen. Im zweiten Jahr werden flächenhafte Simulationen durchgeführt, um die Auswirkung von Stürmen und den Einfluss der erwähnten morphologischen Elemente zu untersuchen. Im dritten Jahr wird ein Modell eines BDS für langperiodische (dekadische) Simulationen entwickelt. Dieses wird dann für die Auswirkungen von zwei Klimawandel-Szenarien (Meeresspiegelanstieg und Sturmhäufigkeit) auf die Erosion an den Dünen zu untersuchen. Die Forschungsergebnisse werden über Zeitschriftenartikel (Climatic Change) und Tagungsberichte veröffentlicht.Die Dauer des Projekts beträgt 3 Jahre und es soll am Zentrum für Marine Umweltwissenschaften (MARUM) der Universität Bremen durchgeführt werden. Die Forschung wird in enger Zusammenarbeit mit internen und externen Kollegen durchgeführt (MARUM: Bremen, NOC: Liverpool, UNESCO-IHE: Delft, IOW: Warnemünde und CRS: Norderney). Zusätzlich sollen jährliche Treffen mit Experten einberufen werden, um Erkenntnisse zu diskutieren und Feedback zu erhalten.
Ökologische Stabilität ist der Schlüssel zur Vorhersage der Folgen von Umweltveränderungen, denn sie umfasst Aspekte der Antwort auf verschiedene Störungsszenarien, zum Beispiel die Fähigkeit, Veränderungen zu widerstehen, diese zu absorbieren oder sich von ihnen zu erholen. Die wichtigsten Fortschritte bei der wissenschaftlichen Bewertung der ökologischen Stabilität in jüngster Zeit ergaben sich aus i) der Anerkennung der mehrdimensionalen Natur der Stabilität, ii) der Unterscheidung zwischen der Stabilität funktioneller Eigenschaften eines Ökosystems und der Stabilität der Zusammensetzung der Gemeinschaft und iii) der Erkenntnis der Bedeutung der räumlichen Dynamik für das Verständnis der lokalen Stabilitätseigenschaften. Trotz dieser Fortschritte wird unser Verständnis der Stabilität (und ihrer Verwendung in den Ökologie- und Umweltwissenschaften) immer noch durch unsere Unfähigkeit behindert, die Stabilität der Gemeinschaft anhand artspezifischer Leistungen und Merkmale vorherzusagen. Das Verständnis der Beiträge der Arten zur Stabilität ist das Hauptziel dieses Projektantrages. Wir werden Metriken verfeinern und testen, die die Reaktionen der Arten auf sich ändernde Umgebungen erfassen, und diese Metriken verwenden, um die Stabilität von Lebensgemeinschaften anhand der Leistung einzelner Arten vorherzusagen und die vorhergesagte Stabilität mit der beobachteten zu vergleichen. Die Arbeit ist in vier Arbeitspakete unterteilt, die Simulationen und Datenanalyse (WP 1) kombinieren mit drei experimentellen Arbeitspaketen zunehmender Komplexität (WP2-4). Die Metaanalyse in WP 1 verwendet kürzlich entwickelte Methoden zur Zerlegung von Stabilität, um Arten zu identifizieren, die zur Stabilität oder Verwundbarkeit in verschiedenen Arten von Ökosystemen und Organismen beitragen. Für die Experimente werden marine Planktongemeinschaften unterschiedlichen Trends und Temperaturschwankungen ausgesetzt sein. Diese Experimente werden von einem Bottom-up-Ansatz ausgehen, bei dem Arten mit bekannten Reaktionen zu Artenpaaren und Zusammenstellungen mit geringer Diversität kombiniert werden, wobei die erwartete mit der beobachteten Stabilität verglichen wird (WP 2). In WP 3 werden wir mithilfe eines Metacommunity-Setups testen, wie die Vorhersagbarkeit von Stabilitätsaspekten wie Resistenz, Resilienz, Erholungsfähigkeit und zeitliche Stabilität von der Konnektivität im Raum abhängt. Schließlich werden wir Mesokosmen verwenden, um zu testen, ob dieselben Merkmale die Stabilität der Phytoplanktongemeinschaft in Abwesenheit oder Gegenwart eines generalistischen Zooplankton-Verbrauchers beeinflussen.
Das Verhalten anthropogener Schadstoffe im Landschaftsmaßstab stellt eine der größten Herausforderungen heutiger Umweltwissenschaften dar. Forschungsergebnisse der letzten zehn Jahre haben wiederholt gezeigt, dass Umsatzraten von Schadstoffen, die im Labor ermittelt wurden, im Widerspruch zu Feldbeobachtungen stehen. Dies weist darauf hin, dass wir die relevanten Prozesse, die den Schadstoffumsatz in der Natur bestimmen, nur unvollständig verstehen. Entsprechend sind wir nicht in der Lage, zukünftige Entwicklungen der Wasser- und Bodenqualität in Folge des Klima- und Landnutzungswandels zuverlässig vorherzusagen. Der SFB CAMPOS beruht auf der Hypothese, dass auf der Feldskala Prozesse maßgeblich sind, die in Laborexperimenten nur schwer zu erfassen sind. Viele Schadstoffe, die unter Laborbedingungen vergleichsweise schnell abgebaut werden, zeigen eine unerwartete Langlebigkeit im Feld; sie werden in Böden und Grundwasserleitern über lange Zeiträume gespeichert und können noch Jahre, nachdem der anthropogene Eintrag aufgehört hat, nachgewiesen werden. Während wichtige, aber langsame Prozesse in Laborstudien möglicherweise übersehen werden, erschwert die ausgeprägte hydrologische und biogeochemische Dynamik die Interpretation konventioneller Beobachtungskampagnen im Feld. CAMPOS zielt darauf ab, reaktive Landschaftselemente zu identifizieren und ihre Prozessdynamik mit ausführlichen Feldstudien zu biogeochemischen Umsätzen von Schadstoffen in einer beispiellosen Auflösung zu quantifizieren. Derartige Studien sind erst durch den enormen Fortschritt in der Analytik und Messtechnik der letzten Jahre (z.B. substanzspezifische Isotopen- und Enantiomeranalytik, 'non-target screening', Bioanalytik, insitu Sensoren, molekularbiologische Techniken inklusive omics) ermöglicht worden, die bislang noch nicht in gezielten Felduntersuchungen kombiniert wurden. Jedes im SFB vorgesehene Projekt vereinigt Expertise aus unterschiedlichen Disziplinen, die notwendig sind, um den Verbleib von Schadstoffen in der Natur zu verstehen. Die untersuchten Landschaftselemente umfassen Fließgewässer, den Übergang zwischen Gerinnen und dem Untergrund, Transekten im Grundwasser sowie verschiedene Bodenkompartimente. Ein neuer stochastischer Modellieransatz ermöglicht es, den reaktiven Stofftransport im Landschaftsmaßstab prozessbasiert zu modellieren und die damit verbundene Unsicherheit zu quantifizieren. Unser neuartiger multidisziplinärer Ansatz quantifiziert das langfristige Verhalten anthropogener Schadstoffe in der Umwelt, indem Einzugsgebiete als biogeochemische Reaktoren betrachtet werde. CAMPOS trägt somit zum Fortschritt der Umweltwissenschaften bei und schafft die Grundlage für realistischere Projektionen der zukünftigen Boden- und Wasserqualität unter den Bedingungen des Klima- und Landnutzungswandels.
Das Einzugsgebiet des Schwingbachs in der Großgemeinde Hüttenberg wird seit Anfang 2009 als Studienlandschaft für Studierende des Fachbereichs Agrarwissenschaften und Umweltmanagement der Justus-Liebig-Universität Gießen genutzt. Insbesondere die Professuren Bodenkunde und Bodenerhaltung , Ressourcenmanagement , sowie Landschaftsökologie und Landschaftsplanung werden Lehrveranstaltungen in der Studienlandschaft durchführen sowie Bachelorund Masterarbeiten in diesem Raum anfertigen lassen. Dabei besteht durch Zusammenarbeit der drei Professuren ein interdisziplinärer Lehransatz, der ein sehr breites Spektrum der Umweltwissenschaften abdeckt. Praxisnahe fachübergreifende Themen, insbesondere zur Bedeutung unterschiedlicher Landnutzungen für Ökosystemdienstleistungen, werden z. B. von studentischen Projektgruppen bearbeitet. Die Studierenden der Justus-Liebig-Universität Gießen erlangen durch das Arbeiten in der Gruppe Teamfähigkeit, Organisationstalent sowie Fachwissen, um sich im späteren Berufsleben selbständig behaupten zu können. Zur Unterstützung der Lehre und Forschung werden Untersuchungsflächen, Bodenprofile, Messgeräte sowie ein Landschafts-Lernpfad eingerichtet. Vegetationsökologische, hydrologische, meteorologische, bodenphysikalische und bodenchemische Daten sowie landschaftsökologische Aspekte der kulturhistorischen und landwirtschaftlichen Nutzung dieser Landschaft werden erfasst, dokumentiert und umweltwissenschaftlich bewertet. So wird eine ganzheitliche Betrachtung der ökologischen Zusammenhänge dieser Landschaft ermöglicht. Es bietet sich an, auch der interessierten Öffentlichkeit Informationen über die Lehre und Forschung an der Justus-Liebig-Universität zugänglich zu machen. Hier ist zugänglich machen im Sinne von Wissensvermittlung zu verstehen. Der oben genannte Landschafts-Lernpfad soll auch diesem Zweck dienen. Das Konzept eines solchen Lernpfades beruht darauf, dass neben der rationalen Komponente (Fachwissen) eine emotionale Komponente (sinnliche Wahrnehmung der Natur) wichtig ist, um die Ziele der Umweltbildung zu erreichen. Ziel des Lernpfades ist es, Informationen zu geben und für die Wahrnehmung der Umgebung zu sensibilisieren. Die Informationsvermittlung muss interessant und ansprechend sein. Anstelle langer belehrender Texte sollte sie wechselseitig gestaltet sein. Benutzer und Betrachter können selbst tätig werden. Über interaktive Wissensvermittlung, sinnliche Wahrnehmung und schöne Eindrücke , setzt sich der Mensch handelnd mit der Umgebung auseinander. Ein Lernpfad soll für Natur und Umwelt sensibilisieren und dabei Spaß machen. Schon vor 200 Jahren forderte Johann Heinrich Pestalozzi das Lernen mit Kopf, Herz und Hand . So werden die drei Lernziele der Umweltbildung - Handlungskompetenz, Handlungsbereitschaft und Handlungsausführung - erreicht und damit die Grundvoraussetzungen für einen erfolgreichen Natur- und Umweltschutz geschaffen. (Text gekürzt)
Entwicklung und Erprobung eines weiterbildenden Fernstudienganges Angewandte Umweltwissenschaften mit Diplomabschluss. Gestaltung eines kompletten online-Studienangebotes.
Origin | Count |
---|---|
Bund | 149 |
Kommune | 2 |
Land | 21 |
Wissenschaft | 3 |
Type | Count |
---|---|
Ereignis | 4 |
Förderprogramm | 125 |
Text | 27 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 39 |
offen | 129 |
Language | Count |
---|---|
Deutsch | 136 |
Englisch | 60 |
Resource type | Count |
---|---|
Bild | 4 |
Datei | 2 |
Dokument | 6 |
Keine | 104 |
Webdienst | 2 |
Webseite | 61 |
Topic | Count |
---|---|
Boden | 117 |
Lebewesen & Lebensräume | 119 |
Luft | 90 |
Mensch & Umwelt | 168 |
Wasser | 91 |
Weitere | 157 |