API src

Found 209 results.

H2Mare-VB2, Teilvorhaben: Entwicklung der Prozesse zur Offshore-Erzeugung von CO und H2 aus CO2 und H2O mittels SOEC

Das Projekt "H2Mare-VB2, Teilvorhaben: Entwicklung der Prozesse zur Offshore-Erzeugung von CO und H2 aus CO2 und H2O mittels SOEC" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik.

Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung

Das Projekt "Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.Es ist das primäre Ziel dieses Projektes, Prozesse an der Schnittstelle zwischen Boden und Atmosphäre und deren Einfluss auf die ungesättigte Bodenzone zu analysieren, sowie die Theorie derartigen nicht-isothermen, mehrphasen und mehrkomponenten Prozesse zu verbessern. Hierbei liegt der Hauptfokus auf dem Einfluss von Oberflächenrauheiten und Heterogenitäten auf das Austauschverhalten. Das übergeordnete Ziel ist es, neue und validierte physikalische und mathematische Modelle zu entwickeln. Diese Modelle sollen mithilfe von umfassenden experimentellen und numerischen Analysen auf verschiedenen örtlichen und zeitlichen Skalen erstellt werden. Das Projekt hat vier Hauptziele:1. Hochauflösende Laborexperimente sollen auf verschiedenen Skalen (0,25-8m) durchgeführt werden, um neuartige Datenreihen zu erstellen, die aktuell nicht verfügbar sind. Dazu werden Experimente in einem Boden-Atmosphären Windkanal, dem Einzigen seiner Art, durchgeführt in denen die Eigenschaften der freien Strömung, der Bodenoberfläche und des Bodens variiert werden.2. Auf der Intermediate Skala werden Freifeldversuche unter dynamischen Randbedingungen durchgeführt um (i) die theoretischen Beschreibungen unter dem Einfluss von natürliche Heterogenitäten (z.B. Aggregaten) zu testen (ii) den Einfluss von tagesgang-abhängigen Triebkräften (z.B. Windgeschwindigkeit) zu analysieren und (iiI) zu untersuchen wie die Heterogenitäten am besten auf unterschiedlichen Skalen integriert werden können und wie diese die Austauschprozesse beeinflussen.3. Mit Hilfe dieser experimentellen Daten werden detaillierte numerische Simulationen auf der Darcy Skala (wenn notwendig mit der Forchheimer Erweiterung) benutzt, um zu analysieren ob es notwendig ist, die freie Strömung und deren Grenzschichteffekte für Masse, Impuls und Energie in aktuelle Modelle zu integrieren.4. Die Theorie für Massen-, Impuls- und Energieaustauschprozesse zwischen der Atmosphäre und dem Boden soll verbessert werden. Das beinhaltet Verdunstung, Kondensation, Strahlung und Transport von Komponenten, wie flüchtigen Komponenten in der Gasphase (VOC) oder stabilen Wasserisotopen, unter der Berücksichtigung unterschiedlicher Materialgrenzflächen. In einem zweiten Schritt sollen vereinfachte Modelle mit effektiven Parametern, basierend auf der integralen Betrachtung von Strömungs- und Transportprozessen, entwickelt, erweitert und getestet werden. Diese Modelle sollen die Effekte auf den unterschiedlichen zeitlichen und räumlichen Skalen wiedergeben.

Pflanzenschutzmittel und ihre Transformationsprodukte in stehenden Kleingewässern - Einfluss von Hydrologie, Stoffeigenschaften und Flächenmanagement

Das Projekt "Pflanzenschutzmittel und ihre Transformationsprodukte in stehenden Kleingewässern - Einfluss von Hydrologie, Stoffeigenschaften und Flächenmanagement" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Natur- und Ressourcenschutz, Abteilung Hydrologie und Wasserwirtschaft.Stehende Kleingewässer erfüllen vielfältige ökohydrologische Aufgaben und sind von zentraler Bedeutung für die Biodiversität im ländlichen Raum. Aufgrund ihrer Größe/Lage stehen sie in komplexer Interaktion mit ihrer Umgebung, die man bei anderen Gewässertypen so nicht findet, und sind besonders durch Pflanzenschutzmittel (PSM) gefährdet. Das Prozessverständnis für den Transport von PSM in stehenden Kleingewässer und dessen Steuergrößen sind essentiell, um ihre Funktionsfähigkeit zu erhalten. Bisher liegt nur ein Basisverständnis zum Transport von Wasser und wenigen Nährstoffen in stehenden Kleingewässer vor. Ein zeitlich/räumlich hochaufgelöstes Messprogramm ist notwendig, das auch die im Jahresverlauf vielfältigen ökohydrologischen Situationen mit den jeweiligen hydrochemischen Bedingungen erfasst, um auch die Langzeitdynamik der PSM im Gewässer zu verstehen. Es wird in diesem Projekt der Einfluss von Hydrologie, Stoffeigenschaften und Flächenmanagement auf den Eintrag und die Dynamik von PSM über 2 Jahre bei 2 stehenden Kleingewässern unter landwirtschaftlicher Praxis im Gewässer untersucht, um diese Forschungsfragen zu beantworten:1. Wie variiert die Hydrologie von stehenden Kleingewässer, die unterschiedlich an das oberflächennahe Grundwasser angeschlossen sind? 2. Werden die PSM und ihre Transformationsprodukte (TP) über einen oder mehrere Eintragspfade in das Kleingewässer transportiert? Wie teilen sich die Frachten auf die Eintragspfade auf? 3. Werden durch die physikochemischen Eigenschaften der PSM/TP sowohl die Eintragspfade als auch die zeitliche Dynamik und Konzentration im Kleingewässer bestimmt, so dass beispielsweise weniger sorptive PSM über unterirdische Pfade in verzögerten und gedämpften Pulsen (langsame Abflusskomponente) in das Kleingewässer eingetragen werden? 4. Müssen neben der aktuellen Flächennutzung auch Langzeitspeicher im Boden (frühere Anwendungen) und Sediment sowie Flächen aus der Umgebung, die über das oberflächennahe Grundwasser mit dem Kleingewässer verbunden sein können, als Quelle für die aktuellen Befunde berücksichtigt werden? Die Ergebnisse liefern wichtige Erkenntnisse, über welche Transportpfade PSM und ihre TP in stehenden Kleingewässer eingetragen werden und welche Variablen einen hohen bzw. einen geringen Einfluss auf diese Prozesse haben. Diese Erkenntnisse werden durch die Ursachenforschung, ob die PSM/TP von der umgebenden Fläche oder aus anderen Quellen stammt, ergänzt. Die saisonale Dynamik der Konzentrationen ermöglicht eine Abschätzung von Phasen maximaler (Mehrfach-) Belastungen, was für eine ökotoxikologische Bewertung von großer Bedeutung ist. Auch hier ist das Wissen über die Sensitivität der beeinflussenden Variablen essentiell. Auf Basis dieser Daten können anschließend effektive Maßnahmen implementiert werden, den für den PSM-Eintrag individuell relevanten Pfad(e) zu reduzieren.

Natürliche Hintergrundbelastung von Oberflächenwasserkörpern in NRW mit Schwemetallen

Das Projekt "Natürliche Hintergrundbelastung von Oberflächenwasserkörpern in NRW mit Schwemetallen" wird/wurde gefördert durch: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Es wird/wurde ausgeführt durch: C & E Consulting und Engineering GmbH.Ziel des Vorhabens ist es unter Berücksichtigung vorhandener Informationen und ggf. zusätzlich zu untersuchender Proben Oberflächenwasserkörper mit natürlicherweise erhöhten Gehalten an Blei (Pb), Cadmium (Cd), Kupfer (Cu), Nickel (Ni) und/oder Zink (Zn) in der Wasserphase oder im Sediment/Schwebstoff zu identifizieren und für diese Wasserkörper die natürlichen Hintergrundkonzentrationen für diese Schwermetalle in der Wasserphase sowie im Sediment/Schwebstoff abzuleiten. Auf Basis der Ergebnisse können einerseits für diejenigen Wasserkörper, in denen die Umweltqualitätsnormen (UQN)für die prioritären Metalle Pb, Cd und Ni auf Grund von natürlichen Gegebenheiten überschritten werden, Ausnahmen nach Artikel 4(5) WRRL geltend gemacht werden. Andererseits wird die Ursachenforschung für die fünf betrachteten Metalle deutlich unterstützt. Dadurch können Minderungsmaßnahmen zielgerichteter und kosteneffizienter gestaltet werden.

Sukzession und Alternativen in der forstlichen Rekultivierung in Kiesgruben

Das Projekt "Sukzession und Alternativen in der forstlichen Rekultivierung in Kiesgruben" wird/wurde gefördert durch: Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Landespflege. Es wird/wurde ausgeführt durch: Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Landespflege.Nach heutigem Stand des Wissens und der Technik ist die forstliche Rekultivierung von Kiesgruben und Steinbrüchen sehr kosten- und energieaufwendig und dennoch vielfach nicht zufriedenstellend. Die vorliegende, auf mehrere Jahre angelegte Untersuchung befasst sich mit der Vegetationsentwicklung (ungelenkte Sukzession) in für forstliche Pflanzungen vorbereiteten Rekultivierungsflächen, und zwar auf 'rohem und mit Waldoberbodenauflage (mit entsprechendem Diasporenreservoir) behandeltem Rekultivierungssubstrat. Von besonderem Interesse sind hierbei die Gehölze. In zwei Versuchsanlagen (Kiesgrube, Versuchsgelände des Institutes) mit 32 Versuchsparzellen à 2,1 x 2,1 m bzw. 1,5 x 1,5 m werden vier Varianten werden untersucht: Rohboden (Bodengemisch), Auflage von Altwaldoberboden auf Rohboden, beide Varianten jeweils ohne und mit Strohabdeckung. Von April bis Oktober 1999 wurden acht mal Anzahl und Deckung der Arten höherer Pflanzen der Versuchsparzellen aufgenommen sowie der Diasporenregen auf die Versuchsanlage erfaßt. Um die Herkunft der keimenden Pflanzen zu erfassen, wurde neben der Erfassung des Diasporenregens mittels Keimversuchen das Diasporenreservoir der Ausgangssubstrate (Rohboden, Waldoberboden) ermittelt sowie die Flora der unmittelbaren Umgebung erfaßt. Des weiteren werden klimatische Daten einbezogen sowie auf dem Versuchsgelände standörtliche Parameter (Bodenfeuchte in unterschiedlichen Tiefen) gemessen. Es zeigen sich signifikante Unterschiede in der Besiedlungsentwicklung und der Artenzusammensetzung der verschiedenen Varianten. Die Besiedlung erfolgte am raschesten und mit höchsten Deckungsgraden auf Versuchsparzellen mit einer Auflage von Altwaldoberboden. Hier entwickelten sich erst Schlagfluren, im zweiten Jahr breitete sich verstärkt die Brombeere aus. Gehölze treten nur vereinzelt auf. Auf den Rohbodenparzellen siedelten sich erwartungsgemäß Pionier- und Ruderalarten an, die Besiedlung erfolgte gegenüber der Waldbodenvariante jedoch verzögert und nicht so üppig. Die Dynamik auf Parzellen mit Strohauflage wurde im ersten Jahr vor allem von Weizenpflanzen, im zweiten von Ruderalarten bestimmt; Arten der obigen Varianten traten stark verzögert und nur in Einzelexemplaren auf. Für gesicherte erste Prognosen reicht der kurze Untersuchungszeitraum (April bis November 1999) noch nicht aus. Bezüglich der Gehölzentwicklung lassen sich auf einzelnen Rohbodenparzellen Anzeichen für die Entwicklung von Weidengebüschen oder Brombeergestrüppen erkennen. Auf den Parzellen mit Waldbodenauflage wird sich in den nächsten Jahren möglicherweise die Brombeere durchsetzen und andere Pflanzen unterdrücken.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Die Rolle der Permeabiliät um einen Magmenkörper: Von gradueller Deformation oder plötzlicher Eruption

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Die Rolle der Permeabiliät um einen Magmenkörper: Von gradueller Deformation oder plötzlicher Eruption" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Department für Geo- und Umweltwissenschaften - Sektion Mineralogie, Petrologie & Geochemie.Viele der Elektrizität produzierenden geothermalen Felder Island liegen in der Nähe oder gar innerhalb von Kratern, gebildet durch dampfgetriebene Eruptionen. Kraflas geotermales Feld ist ein typisches Beispiel solch einer wertvollen Infrastruktur mit einem ungewissen Gefahrenpotential. Die dampf-getriebene (phreatische) Vití-Eruption fand direkt vor der effusiven Spalteneruption der Mývatn Fires (1724-29) statt: Auslöser der Eruption und Ursache für ihre Lage weit abseits der Hauptspalten für die Magmenförderung sind unbekannt. Unter diesem Aspekt werfen die Funde der Bohrung IDDP-1 - eine rhyolitische Schmelze in etwa 2km Tiefe unterhalb der Krafla Caldera und einer konduktiven Grenzschicht (CBL), welche das Magma von dem darüberliegenden hydrothermalen System trennt - eine Schlüsselfrage auf: Falls sich die Intrusion während der letzten Spalteneruption, den Krafla Fires (1975-84) bildete, warum kam es dann diesmal zu keiner explosiven Eruption (wie bei Vití)? Bisherige Arbeiten legen Nahe, dass vorallem die Gesteinspermeabilität darüber entscheidet ob ein unter Überdruck stehendes Fluid sein Umgebungsgestein fragmentiert oder ob es aufgrund von effektiver Ausströmung entweichen kann. Eine Lage wie die CBL mit unbekannter Permeabilität, kann eine vorzügliche lithologische Barriere oberhalb der rhyolitischen Magma darstellen. Das hier beantragte Forschungsvorhaben hat das Verständnis des magma/hydrothermalen Systems und seiner Auswirkungen auf potentielle vulkanische Gefahrenmomente zum Ziel, wie ebenfalls in dem wissenschaftlichen Programm des KMDP-Bohrprojektes verankert. Die zwei synergetisch verknüpften Kernpunkte dieses Antrags sind: (i) die Bestimmung der Belastbarkeit und Reaktion der CBL auf P-T-Perturbationen zum Beispiel aufgrund schneller/stufenweiser Dekompression (natürlicher Art sowie durch Produktion induziert), oder langsamer bis schneller Erwärmung (Magmenintrusion), sowie (ii) die Bestimmung des Zeitmaßstabes bei welchem die CBL ihr Verhalten von Verformung (belastbar) zu spröder Reaktion (Bruch) verändern. Daten und Proben von Bohrprojekten bieten eine einmalige Gelegenheit unser Verständnis der Rolle der Permeabilität solcher CBLs um einen Magmenkörper herum voranzutreiben. Wir wollen diese Wissenslücke schließen durch die Verknüpfung eines neuen Datensatzes zu Gesteinen aus der KMDP Bohrung mit Laborexperimenten zum Dekompression-Explosion Verhalten dieser Gesteine. Mit einer der weltgrößten Stoßrohrapparatus für vulkanische Fragestellungen planen wir verschiedene Szenarien der Reaktion der CBL auf kontrollierte schnelle Dekompression, sowie auf schnelle bzw. Langsame Heizprozesse zu simulieren.

ERA-MIN: Beschleunigte CO2-Behandlung von alkalischen Prozessrückständen zur Herstellung von Bindemitteln mit niedrigem CO2-Fußabdruck, Teilvorhaben 2: Entwicklung von Kompositzementen mit niedrigem CO2-Fußabdruck unter Verwendung karbonatisierter Sekundärrohstoffe

Das Projekt "ERA-MIN: Beschleunigte CO2-Behandlung von alkalischen Prozessrückständen zur Herstellung von Bindemitteln mit niedrigem CO2-Fußabdruck, Teilvorhaben 2: Entwicklung von Kompositzementen mit niedrigem CO2-Fußabdruck unter Verwendung karbonatisierter Sekundärrohstoffe" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: HeidelbergCement AG.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: pETchy: Jahreszeitlich veränderliche Muster der Evapotranspiration

Das Projekt "Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: pETchy: Jahreszeitlich veränderliche Muster der Evapotranspiration" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Forschungsplattform Datenanalyse & Simulation.Untersuchungen der funktionalen Aspekten der pflanzlichen Biodiversität haben in der Regel die Biodiversität mit über Flächen-integrierenden Maßen bestimmt und diese mit mittleren Standorteigenschaften, der mittleren Wasser- und Nährstoff-Nutzungseffizienz etc. verglichen. Die oft beobachteten positiven Auswirkungen hoher Biodiversität auf die Effizienz der Ressourcennutzung und auf die Ökosystemstabilität werden damit begründet, dass verschiedene Arten zeitlich und räumlich unterschiedliche Nischen für die Wasser- und Nährstoffaufnahme nutzen. Es bietet sich daher an, zu untersuchen, inwiefern höhere Biodiversität tatsächlich zu höherer räumlicher und zeitlicher Variabilität funktionaler Muster wie dem der Wasseraufnahme führen. Unter 'zeitlicher Variabilität' wird hier die zeitliche Änderung räumlicher Muster der Wasser- und Nährstoffaufnahme verstanden, abhängig von den hydrologischen Randbedingungen, die einzelne Arten oder funktionale Gruppen begünstigen oder benachteiligen. Das beantragte Projekt zielt darauf ab, sowohl die innerhalb der einzelnen experimentellen Plots gemittelte Evapotranspiration als auch räumliche Muster und den Grad der Heterogenität der Evapotranspiration innerhalb der experimentellen Plots sowie die zeitliche Stabilität dieser räumlichen Muster zu untersuchen. Dazu werden zwei innovative Ansätze kombiniert. Mittels Drohnen-gestützter Thermal- und Multispektral-Aufnahmen können räumliche Muster der aktuellen Evapotranspiration mit hoher räumlicher Auflösung und mit geringem Aufwand bestimmt werden. Mittels modernen Verfahren zur Analyse großer Datensätze hydrologischer Zeitreihen können die jeweiligen Beiträge verschiedener Prozesse auf die beobachtete Dynamik quantitativ erfasst werden. Die Kombination dieser beiden Ansätze ermöglicht eine Verschneidung räumlicher und zeitlicher Aspekte, um die Auswirkungen der Biodiversität auf die pflanzliche Wasseraufnahme besser zu verstehen. Im Einzelnen ist vorgesehen: 1. Mittels räumlich hoch aufgelöster Drohen-gestützter Fernerkundung wird die räumliche Heterogenität der Evapotranspiration innerhalb der experimentellen Plots bestimmt. Wir erwarten, dass höhere räumliche Variabilität mit höherer Widerstandfähigkeit gegen Trockenstress einhergeht. 2. Effekte der pflanzlichen Diversität auf die räumlichen Muster der Evapotranspiration werden von Effekten kleinskaliger Bodenheterogenitäten hinsichtlich der Verfügbarkeit von Nährstoffen, der Wasserhaltekapazität und der Bodenfeuchte unterschieden. Wir erwarten gegenseitige Abhängigkeiten zwischen Pflanzen und Boden, aber auch Effekte der pflanzlichen Diversität, die über die des Bodens hinausgehen. 3. Mittels zeitlich wiederholter Befliegungen werden die räumlichen Muster auf zeitliche Stabilität überprüft. Wir erwarten einen negativen Zusammenhang zwischen der zeitlichen Stabilität räumlicher Muster innerhalb der einzelnen Flächen und dem Grad der Biodiversität.

Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik

Das Projekt "Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Materialwissenschaft, Lehrstuhl für Chemische Materialsynthese.norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung

Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, MEET Batterieforschungszentrum.Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.

1 2 3 4 519 20 21