API src

Found 403 results.

Emmy Noether-Nachwuchsgruppen, Mechanisms regulating the boron nutritional status in rapeseed and Arabidopsis and their implications for the development of boron-efficient genotypes

Boron (B) is an essential microelement for plants. Despite the use of modern fertilization methods, B deficiency still causes losses in agricultural plant production. Even though many positive effects of B on plant growth and physiology have been reported, a large majority of B functions and the regulatory mechanisms controlling the B nutritional status remain unknown. The main objective of this project is to elucidate how the greatly B deficiency-sensitive Brassica crop plants process and regulate their B status during vegetative and reproductive growth. In this context, the project aims at identifying the mode of action of B in mechanisms regulating the B status itself and uncovering those mechanisms contributing to B efficiency in different genotypes. Plant species subjected to investigation will be the agronomically important oilseed and vegetable plant Brassica napus (rapeseed) and its close relative the genetic and molecular model plant Arabidopsis thaliana. Questions addressed within the scope of this project should lead to a detailed understanding of mechanisms controlling B uptake and allocation from the level of the whole plant down to the cellular level. B transport routes and rates will be determined in sink- and source tissues and in developmental periods with a particularly high B demand. A special focus will be on the identification of B transport bottlenecks and the analysis of B deficiency-sensitive transport processes to and within the highly B-demanding reproductive organs. Recent studies in Arabidopsis suggest that Nodulin26-like Intrinsic Proteins (NIPs), which belong to the aquaporin channel protein family, are essential for plant B uptake and distribution. The systematic focus on the molecular and physiological characterization of B. napus NIPs will clarify their role in B transport and will identify novel NIP-associated mechanisms playing key roles in the B response network.To further resolve the mostly unknown impact of the B nutritional status on gene regulation and metabolism, a transcript and metabolite profile of B-sufficient and B-deficient rapeseed plants will be generated. Additionally, an Arabidopsis transcription factor knockout collection (greater 300 lines) will be screened for abnormalities in responses to the B nutritional status. This will identify yet unknown B-responsive genes (transcription factors and their targets) and gene products (enzymes or metabolite variations) playing key roles in signalling pathways and mechanisms regulating the B homeostasis. Boron (in form of boric acid) and arsenite (As) share in all likelihood the same NIP-mediated transport pathways. To assess the consequences of this dual transport pathway the so far unstudied impact of the plants B nutritional status on the accumulation and distribution of As will be investigated in B. napus. Moreover, the current dimension of the As contamination of Brassica-based food products, to which consumers are exposed to, will be analyzed. usw.

Soil colour spectra of prehistoric pit fillings as a new analytical tool to measure changing soil characteristics over time on a regional scale

Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.

Flowering time, development and yield in oilseed rape (Brassica napus): Sequence diversity in regulatory genes

Flowering time (FTi) genes play a key role as regulators of complex gene expression networks, and the influence of these networks on other complex systems means that FTi gene expression triggers a cascade of regulatory effects with a broad global effect on plant development. Hence, allelic and expression differences in FTi genes can play a central role in phenotypic variation throughput the plant lifecycle. A prime example for this is found in Brassica napus, a phenotypically and genetically diverse species with enormous variation in vernalisation requirement and flowering traits. The species includes oilseed rape (canola), one of the most important oilseed crops worldwide. Previously we have identified QTL clusters related to plant development, seed yield and heterosis in winter oilseed rape that seem to be conserved in diverse genetic backgrounds. We suspect that these QTL are controlled by global regulatory genes that influence numerous traits at different developmental stages. Interestingly, many of the QTL clusters for yield and biomass heterosis appear to correspond to the positions of meta-QTL for FTi in spring-type and/or winter-type B. napus. Based on the hypothesis that diversity in FTi genes has a key influence on plant development and yield, the aim of this study is a detailed analysis of DNA sequence variation in regulatory FTi genes in B. napus, combined with an investigation of associations between FTi gene haplotypes, developmental traits, yield components and seed yield.

Das Energiewende-Szenario 2020 - Ausstieg aus der Atomenergie, Einstieg in Klimaschutz und nachhaltige Entwicklung

CFK-Recycling in der Kompetenzregion Augsburg

The increasing proportion of carbon fibre reinforced plastics (CFRP) in different branches of industry will result in an increasingly larger quantity of CFRP wastes in future. With regard to improved management of natural resources, it is necessary to add these fibres that require energy-intensive production to effective recycling management. But high-quality material recycling is only ecoefficient if the recycled fibres can be used to produce new high-quality and marketable products. Tests carried out up to now indicate that very good results can be expected for large-scale recycling of carbon fibres by means of pyrolysis. The waste pyrolysis plant (WPP) operated in Burgau is the only large-scale pyrolysis plant for municipal wastes in Germany. Use of this plant to treat CFRP wastes represents a unique opportunity for the whole Southern German economy and in particular the Augsburg economic region. In a study funded by the Bavarian State Ministry of the Environment and Health ('Bayerisches Staatsministerium für Umwelt und Gesundheit'), the specific implementation options for the recovery of carbon fibres from composites by means of large-scale pyrolysis have been under investigation since November 2010. To this end, in the first step a development study was carried out, which in particular examined the options for modifying the Burgau WPP for the recycling of CFRP. The knowledge acquired from the pyrolysis tests, the fibre tests and the economic feasibility study confirmed the positive assessment of the overall concept of CFRP recycling in Burgau. As an overall result, unlimited profitability was found for all scenarios with regard to investments in CFRP recycling in Burgau WPP. The work on the development study was carried out by bifa Umweltinstitut GmbH together with the Augsburg-based 'function integrated lightweight construction project group ('Funktionsintegrierter Leichtbau' - FIL) of the Fraunhofer Institute for Chemical Technology (ICT). Methods: analysis and moderation of social processes, economy and management consulting, process engineering

The iron-snow regime in Fe-FeS cores: a numerical and experimental approach

In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.

A meta-analysis of global insecticide concentrations in agricultural surface waters

Although global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems is very restricted. Consequently, this meta-analysis will for the first time evaluate the worldwide available peer-reviewed information on agricultural insecticide concentrations in surface water or sediment and test the following two hypotheses: I) Insecticide concentrations in the field largely exceed regulatory threshold levels and II) Additional factors important for threshold level exceedances can be quantified using retrospective meta-analysis. A feasibility study using a restricted dataset (n = 377) suggested the significance of the expected results, i.e. an threshold level exceedance rate of more than 50Prozent of the detected concentrations. Subsequent to a comprehensive database search in the peer-reviewed literature of the past 60 years, analysis of covariance with the relevant threshold level exceedance as the continuous dependent variable (about 10,000 cases) will be performed and the impact of significant predictor variables will be quantified. Parameters not yet considered in pesticide exposure assessment will be included as independent variables, such as compound class, environmental regulatory quality, and sampling design. The simultaneous presence of several insecticide compounds as a well as their metabolites will also be considered in the evaluation. The present approach may provide an innovative and integrated view on the potential environmental side effects of global high-intensity agriculture and in particular of pesticides use.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Mineral magnetism of shocked ferrimagnetic minerals

Magnetic properties of ferrimagnetic minerals depend on their crystal lattice, anisotropy, chemical composition and grain size. The latter parameter is strongly controlled by microstructures, which are significant for the interpretation of the magnetic properties of shocked magnetic minerals. Fracturing and lattice defects are the main causes for magnetic domain size reduction and generate an increase in coercivity and the suppression of magnetic transitions (e.g. 34 K transition in pyrrhotite, Verwey transition in magnetite).Especially for an adequate investigation of shock-induced modifications in ferromagnetic minerals, a combination of microstructural and magnetic measurements is therefore essential.This project focusses on two significant aspects of extreme conditions - the consequence of shock waves on natural material on Earth and on the magnetic mineralogy of exotic magnetic minerals in iron meteorites. In order to obtain general correlations between deformation structures and magnetic properties, the specific magnetic properties and carriers as well as microstructures of samples from two impact structures in marine targets (Lockne and Chesapeake Bay) will be compared with shocked magnetite ore and magnetite-bearing target lithologies from outside the crater (Lockne) as well as from undeformed megablocks within the crater (Chesapeake Bay). We will test the hypothesis if shock-related microstructures and associated magnetic properties can significantly be overprinted by postshock hydrothermal alteration. We especially want to focus on the Verwey transition (TV) as lower TVs are described for shocked impact lithologies. Hence, the main focus of this study lies on magneto-mineralogical investigations which combine low- and high-temperature magnetic susceptibility and saturation isothermal remanent magnetization with mineralogical and microstructural investigations. The same methods will then be used for the investigation of iron meteorites, whose magnetic properties are often controled by exotic magnetic minerals like cohenite, schreibersite and daubreelite in addition to the metal phases. Magnetic transition temperatures of those phases are poorly documented in relation to their chemical composition as well as to their crystallographic and microstructural configuration. For a general understanding of shock-related magnetization processes in extraterrestrial and terrestrial material, however, it is crucial to obtain a general correlation between the initial 'unshocked' state and the subsequent shock- and alteration-related overprints.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM), Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

Water use characteristics of bamboo (South China)

Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

1 2 3 4 539 40 41