technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing
Geodaten der Flächen im Landkreis Nienburg/Weser, die sich im Trockenabbau befinden. Begriff Trockenabbau: Bei dieser Abbaumethode wird bei der Gewinnung der Bodenschätze kein Grundwasser freigelegt. Im Landkreis Nienburg/Weser findet Trockenabbau ausschließlich im Übertagebau statt. Untertagebau zur Gewinnung von tiefer liegenden Rohstoffen, wie z.B. Kohle oder Salz findet im Landkreis derzeit nicht statt. Im Landkreis Nienburg/Weser wird im Trockenabbauverfahren hauptsächlich Sand und Kies sowie Torf in den Hochmooren Lichtenmoor, Borsteler Moor und Siedener Moor sowie im Großen Moor bei Uchte abgebaut. Der einzige Steinbruch des Landkreises befindet sich in der Gemarkung Münchehagen.
Systemraum: Entnahme aus der Lagerstätte bis Zink in regionalen Lagern Geographischer Bezug: Europa Zeitlicher Bezug: 2000 - 2004 Weitere Informationen: Mix aus 80% hydrometallurgischer und 20% pyrometallurgischer Produktion Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung und Herstellung: Art der Förderung: Untertagebau Roherz-Förderung: China 26% Australien 13,8% Peru 12% USA 7,3% Kanada 7,1% Mexiko 4,8% Kasachstan 4% im Jahr 2006 Rohmetall-Herstellung: China 29,2% Kanada 7,6% N-Korea 6,2% Japan 5,7% im Jahr 2006 Abraum: k.A.t/t Fördermenge: 10000000t/a Reserven: 180000000t Statische Reichweite: 18a
Systemraum: Erz in Lagerstätte bis fertiges Metall Geographischer Bezug: Weltmix Zeitlicher Bezug: 2000 - 2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung und Herstellung: Art der Förderung: Tage- und Untertagebau Roherz-Förderung: Südafrika 12% Australien 10,7% USA 10,3% China 9,2% Peru 8,5% Russland 6,8% Indonesien 5,8% im Jahr 2005 Rohmetall-Herstellung: - keine Daten verfügbar Abraum: k.A.t/t Fördermenge: 2460t/a Reserven: 42000t Statische Reichweite: 17,1a
Systemraum: Entnahme von Bleierz aus der Natur bis Primärblei in regionalen Lagern Geographischer Bezug: Europa Zeitlicher Bezug: 2000-2005 Weitere Informationen: Betrachtung bildet den Hochofenprozess ab Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung und Herstellung: Art der Förderung: meist Untertagebau Roherz-Förderung: China 30,7% Australien 23% USA 13,1% Peru 9,6% Mexiko 4% Rohmetall-Herstellung: China 26,9% USA 18,6% Deutschland 5,3% Raffinade-Blei im Jahr 2004 Abraum: k.A.t/t Fördermenge: 3300000t/a Reserven: 67000000t Statische Reichweite: 20,3a
Systemraum: Erzförderung bis Primärchrom in regionalen Lagern Geographischer Bezug: Europa Zeitlicher Bezug: 1999-2004 Weitere Informationen: Betrachtung bildet eine Mischung aus dem aluminotheremischen Herstellungsprozess und der Elektrolyse ab Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung und Herstellung: Art der Förderung: Untertagebau > Tagebau Roherz-Förderung: Südafrika 43% Indien 19,1% Kasachstan 18,9% Türkei 4,9% Chromerz im Jahr 2005 Rohmetall-Herstellung: Russland 37% UK 16% Frankreich 16% China 14% USA 7% Kasachstan 5% Produktionskapazität im Jahr 2005 Abraum: 6,2t/t Fördermenge: 19300000t/a Reserven: 3600000000t Statische Reichweite: 187a
Systemraum: Abbau Rohmaterial und Brechen Geographischer Bezug: Deutschland Zeitlicher Bezug: 2000-2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Tage- und Untertagebau Rohstoff-Förderung: USA 15,8% Iran 9,9% Kanada 8,6% Thailand 7,2% China 6,6% Spanien 6,8% Fördermenge Deutschland: 1630000 t verwertbare Menge, Jahr 2006 Importmenge Deutschland: 72239 t im Jahr 2007 Abraum: k.A.t/t Fördermenge weltweit: 117700000t/a Reserven: k.A.t Statische Reichweite: k.A.a
Bergbau und Aufbereitung zum Kupferkonzentrat: Die Abbaumethoden des Kupfers sind abhängig von der Zusammensetzung insbesondere dem Kupfergehalt der Erze. Während der durchschnittliche Kupfergehalt der abgebauten Erze um 1900 noch ca. 5 % betrug, liegt er heute unter 1 % (Ullmann 1986). Dabei variiert er je nach Lagerstätte zwischen 0,1 und 6 % (ETH 1995). Aufgrund der hohen Affinität des Kupfers zum Schwefel wird das Kupfer bei den meisten primären Lagerstätten in sulfidischer Form gebunden. Weit mehr als 80 % der Primärkupferproduktion werden aus sulfidischen Erzen gewonnen. Weiterhin werden in geringerem Umfang oxidische, silikatische und bituminöse Erze zur Kupferproduktion gefördert. In der vorliegenden Arbeit wird lediglich auf die Gewinnung von Primärkupfer aus sulfidischen Erzen eingegangen. Neben den Erzen werden auch Altkupfer und andere Sekundärmaterialien zur Produktion von Sekundärkupfer verwendet. Grundsätzlich lassen sich vier Abbauarten unterscheiden: der Tagebau, der Untertagebau, die in-situ-Laugung und der Abbau ozeanischer Vorkommen (derzeit noch nicht wirtschaftlich betrieben). Dabei dominiert der Tagebau die weltweite Erzgewinnung (ETH 1995). Der Untertagebau kann heute fast nur noch bei Reicherzen wirtschaftlich betrieben werden. Dem Abbau des Roherzes folgt eine Abtrennung der Gangart. Das Erz/Gangart-Verhältnis ist schon innerhalb einer Förderstätte starken Schwankungen unterworfen. Mögliche Verhältnisse liegen zwischen 1:1 und 1:12, so daß unter Umständen aufgrund dieser hohen Abweichung kupferreiche Erze mit ungünstigem Erz/Gangart-Verhältnis einen höheren Energieeinsatz beim Abbau verlangen, als Erze geringeren Kupfergehalts mit günstigerem Erz/Gangart-Verhältnis (KfA 1989). Das gängige Aufbereitungsverfahren nach dem Aufmahlen der Roherze ist die Flotation. Dabei lagern sich die Erzbestandteile an die Flotationsmittel an und werden in einer der Gangart entgegengesetzten Richtung abgeführt. Im Anschluß an die Flotation wird das Konzentrat getrocknet und kann zur Weiterverarbeitung abtransportiert werden. Das Konzentrat hat in der Regel eine Kupferkonzentration zwischen 25 und 35 %. Die Datenbasis für die vorliegende Studie bildet hauptsächlich die „Sachbilanz einer Ökobilanz der Kupfererzeugung aus primären und sekundären Vorstoffen, sowie der Verarbeitung von Kupfer und Kupferlegierungen zu Halbzeug und ausgewählten Produkten“ angefertigt von der Rheinisch Westfälischen Technnischen Hochschule Aachen, Institut für Metallhüttenwesen und Elektrometallurgie (RWTH-IME 1995) im Auftrag des Deutschen Kupfer Instituts (DKI). In ihr wird der Bergbau durch vier Vertreter jeweils eines Minentyps abgebildet. Bilanziert werden je ein Tagebau sowohl mit Reicherz als auch mit Armerz und je ein Untertagebau mit Reicherz und Armerz alle im Ausland. In Deutschland wird laut Metallstatistik seit 1990 keine eigene Bergwerksproduktion mehr betrieben (Metallstatistik 1995). Das Kupferkonzentrat zur Hüttenproduktion aus primären Rohstoffen wird also zu 100 % importiert. Die vier in der Studie des RWTH-IME bilanzierten Minen stellen 15 % der weltweiten Bergwerksproduktion dar. Der Anteil der einzelnen Minen wird gewichtet nach der Produktionsmenge berücksichtigt. Eine Extrapolation auf die gesamte Weltproduktion bzw. auf einen globalen Mittelwert ist anhand dieser Daten nicht möglich. Der in der vorliegenden Studie aufgeführte Wert ist damit nur als Näherungswert zu sehen. In den kommenden Monaten wird jedoch eine Studie des Bundesamtes für Geowissenschaften und Rohstoffe (BGR) in Zusammenarbeit mit dem Umweltbundesamt (UBA) erscheinen („Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Maßnahmenempfehlungen für eine umweltschonende nachhaltige Entwicklung“), in der versucht wird, die globalen Kupferminen summarisch zu erfassen. Nach Auskunft des BGR nach einer vorläufigen Auswertung sind die in GEMIS verwendeten Daten trotz mangelnder Repräsentativität gemessen an der relativen Fehlermöglichkeit bei der Mittelwertbildung gut. Sie sind in einer ähnlichen Größenordnung wie die von der BGR gewonnenen Daten (BGR 1996). Da bei den vier bilanzierten Abbau-Standorten kein lokaler Bezug herzustellen ist, muß der Datensatz hierzu als generisch gelten. Es wird daher auch eine fiktive Transportstrecke des nach der Förderung aufbereiteten Konzentrats nach Deutschland angenommen. Ein lokaler Bezug für den Transport des Konzentrats nach Deutschland würde auch nur für einen bestimmten Zeitraum Sinn machen, da deutsche Verarbeiter periodisch ihre spezifischen Lieferverträge neu aushandeln und die Rohstoffe aus anderen Nationen und Regionen beziehen können (BGR 1996). Da über die spezifischen Konzentrat-Lieferanten und deren Minen keine hinreichenden Informationen vorliegen, muß der generische Bezug akzeptiert werden. Allokation: keine Genese der Kennziffern Als Bezugsgröße zur Bilanzierung der beschriebenen Prozeßschritte wurde entsprechend der Methodik von GEMIS eine Tonne trockener Konzentrat-Output gewählt. Massenbilanz: In Abhängigkeit von den Gehalten des Kupfers im Erz und im Konzentrat müssen in den einzelnen Gruben unterschiedliche Mengen Erz gefördert werden, dementsprechend fallen auch unterschiedliche Mengen Abraum und Berge an. Abraum und Berge werden unter den Reststoffen ausführlicher bilanziert. Im folgenden werden die zu fördernden Mengen Erz angegeben, die pro Tonne trockenes Konzentrat an den einzelnen Abbaustätten zu extrahieren sind. Tab.: Fördermengen der einzelnen Gruben und des gewichteten Mittels der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Gehalt Cu kg /t Erz 32 10 12,5 5 Gehalt Cukg/t Konz 270 305 350 350 Förderung Erz t/t Konz 8,4 30,5 28 70 30,2 Für die berücksichtigten 15 % der Weltproduktion können im Mittel 30.200 kg Erz pro Tonne gewonnenen Kupferkonzentrats angenommen werden. Zusätzlich muß die Abraummenge berücksichtigt werden, die bei der Förderung anfällt, um auf die Gesamtmenge bewegten Materials schließen zu können. Sie wird unter Reststoffen genauer bilanziert. Im gewichteten Mittel fallen 55,7 t Abraum an (RWTH-IME 1995). Somit ergibt sich eine Gesamtfördermenge von 85,9 t pro t trockenes Konzentrat . Energiebedarf: Der Energiebedarf bei der Förderung und Aufbereitung kommt durch die Abbauaggregate und die Transporte innerhalb der Mine sowie den elektrischen Energiebedarf zur Aufbereitung zustande. Für die in der Studie für das DKI untersuchten Minen wird der in der folgenden Tabelle dargestellte Energiebedarf angegeben. In GEMIS wird das gewichtete Mittel der Minen angesetzt. Tab.: Strom- und Dieselbedarf bei der Förderung und Aufbereitung der Erze zum Kupferkonzentrat bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel StrombedarfGJ/t Konz 2,29 3,73 3,36 5,73 3,54 DieselbedarfGJ/t Konz 0,67 1,26 3,37 5,32 2,70 Aus der Tabelle geht hervor, daß im Mittel mit einem Strombedarf von ca. 3,54 GJ/t trockenes Konzentrat ausgegangen werden kann. Weiterhin muß ein Dieselbedarf von 2,7 GJ/t berücksichtigt werden. Als Hilfsstoff wird dem Erz Branntkalk zugegeben. Im gewichteten Mittel sind ca. 80 kg pro Tonne trockenesKonzentrat zu berücksichtigen (RWTH-IME 1995). Betriebsstoffe: Als Betriebsstoffe bei der Förderung und Aufbereitung der Kupferkonzentrate werden von der RWTH-IME Sprengstoff und Mahlverschleiß bilanziert. Bezogen auf eine Tonne trockenes Kupferkonzentrat werden im gewichteten Mittel der Gruben 20 kg Sprengstoff eingesetzt und 14 kg Mahlverschleiß benötigt (RWTH-IME 1995). Mahlverschleiß wird in GEMIS als Aufblasstahl interpretiert. Prozeßbedingte Luftemissionen: Abgesehen von den bei der Energiebereitstellung auftretenden Luftemissionen (werden aus den vorgelagerten Prozeßketten bzw. über eine Verbrennungsrechnung erfaßt) werden keine weiteren prozeßbedingten Luftemissionen berücksichtigt. Emissionen aus der Nutzung des Sprengstoffs werden über die Prozeßkette des Sprengstoffs mitbilanziert. Wasserinanspruchnahme: Beim Abbau der Erze und deren Aufbereitung wird eine Wasserinanspruchnahme von 22 l/t trockenes Konzentrat bilanziert, die hauptsächlich durch die Aufbereitung (Flotation) verursacht wird (RWTH-IME 1995). Eigentlich ist der Wasserbedarf der Gruben mit 4-10 m³/t Roherz sehr viel größer. Allerdings wird ein Großteil des Wassers im Kreislauf geführt. Bilanziert wird daher nur der zu ersetzende Verlust (RWTH-IME 1995). Abwasserinhaltsstoffe: Weder über die Abwassermengen noch über deren Inhaltsstoffe liegen Informationen vor. Allerdings ist das nicht dahingehend zu interpretieren, daß kein belastetes Abwasser anfällt. So wird das Abwasser beispielsweise mit den ebenfalls nicht bilanzierten Flotationsmitteln belastet. Reststoffe: Als Reststoffe der Gewinnung der Erze und der Aufbereitung zum Konzentrat werden Abraum- und Bergemengen bilanziert. Diese sind in den folgenden Tabellen für die einzelnen Gruben und als gewichtetes Mittel dargestellt. Tab.: Abraummengen der einzelnen Gruben und das gewichtete Mittel der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Abraumt/t Konz 0 1,8 102,2 26,6 55,7 Tab.: Bergemengen der einzelnen Gruben und das gewichtete Mittel der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Berget/t Konz 7,8 34,8 32,2 49 30 In GEMIS werden 55,7 t Abraum und 30 t Berge bezogen auf eine Tonne trockenes Konzentrat bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 11,9% Produkt: Metalle - NE
Systemraum: Entnahme aus den Lagerstätten bis zur Bereitstellung des Phosphats ab Werk Geographischer Bezug: USA Zeitlicher Bezug: 1986-2004 Weitere Informationen: Verarbeitungsschritte für Erze aus Florida und Marokko wird exemplarisch betrachtet Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Tage- und Untertagebau Rohstoff-Förderung: USA 24,7% VR China 20,6% Marokko 17,1% Russland 7,5% Tunesien 5,4% Abraum: k.A.t/t Fördermenge weltweit: 147200000t/a Reserven: 18000000000t Statische Reichweite: 122a
Systemraum: von Erzabbau bis Produkion weißer, flüssiger Phosphor Geographischer Bezug: Weltmix Zeitlicher Bezug: 2000 - 2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Tage- und Untertagebau Rohstoff-Förderung: China (25,8%) USA (19,9%) Marokko (17,9%) Russland (7,2%) Tunesien (5,2%) im Jahr 2006 Produktionsmenge weltweit: keine Angaben verfügbar Abraum: 6,5:4,5 bis 4:1t/t Fördermenge: 151174672t Phosphat-Fels Reserven: 18000000000t Phosphat-Fels Statische Reichweite: 119a
Origin | Count |
---|---|
Bund | 86 |
Land | 12 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 16 |
Text | 70 |
Umweltprüfung | 4 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 26 |
offen | 19 |
unbekannt | 51 |
Language | Count |
---|---|
Deutsch | 90 |
Englisch | 7 |
unbekannt | 2 |
Resource type | Count |
---|---|
Archiv | 48 |
Bild | 1 |
Datei | 48 |
Dokument | 56 |
Keine | 33 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 89 |
Lebewesen & Lebensräume | 61 |
Luft | 36 |
Mensch & Umwelt | 96 |
Wasser | 39 |
Weitere | 94 |