Blatt Berlin zeigt die Landeshauptstadt Berlin und ihre nähere Umgebung - mit Baruther Urstromtal, Barnim, Teltow, Fläming und Havelland. Der Kartenausschnitt wird von Lockergesteinen des Quartärs dominiert. Nur an wenigen Stellen sind ältere Gesteine aufgeschlossen, wie beispielsweise die Kalk- und Mergelsteine bei Rüdersdorf (Muschelkalk) und der Gips-Aufbruch bei Sperenberg (Zechstein). Die Brandenburger Landschaft, als Teil des Norddeutschen Tieflandes, ist eiszeitlich geprägt. Hochflächen aus glazialen Ablagerungen sind der Barnim im Nordosten, Havelland im Westen, Fläming im Südwesten und der Teltow südlich von Berlin. Hier lagern zum Großteil Sedimente des Weichsel-Glazials (Geschiebelehm der Grundmoräne und Schmelzwassersande), aber auch Saale-kaltzeitliche Relikte lassen sich finden. In den Niederungen des Berliner und Baruther Urstromtals bzw. im Havelländischen und Rhin-Luch werden die glazifluviatilen Sande z. T. von jüngeren Moor- und Auesedimenten bzw. äolischen Bildungen wie Dünen- und Flugsanden überlagert. Eine Legende informiert über Alter, Genese und Petrographie der dargestellten Einheiten. Rund die Hälfte der 80 ausgehaltenen Einheiten stellen Überlagerungsfälle dar, die zum besseren Verständnis zusätzlich in einem separaten Überlagerungsschema festgehalten sind. Ein geologisches Profil gewährt zusätzliche Einblicke in den Aufbau des Untergrundes.
Blatt Frankfurt (Oder) zeigt das Norddeutsche Tiefland im Grenzgebiet von Deutschland und Polen. Im Kartenausschnitt hebt sich der Oderbruch mit seinen weitflächig abgelagerten Auesedimenten deutlich ab. Die Morphologie des Tieflandes ist eiszeitlich geprägt, wobei sich z. T. mehrere glaziale Serien (Grundmoräne, Endmoräne, Sander, Urstromtal) überlagern. Ablagerungen der Elster-, Saale- und Weichselkaltzeit dominieren den Blattausschnitt, wobei die Relikte der älteren Eisvorstöße großflächig von weichselkaltzeitlichen Lockersedimenten überlagert sind. Nach ihrer Petrographie und Genese werden unterschieden: Geschiebelehm/-mergel der Grundmoränen, Aufschüttungen der Endmoränen, glazilimnische Beckenschluffe, fluviatile und glazifluvitile Sande sowie äolische Flug- und Dünensande. Präquartärer Untergrund tritt nur vereinzelt und regional eng begrenzt unter der quartären Deckschicht zu Tage. Vorkommen von miozänem Braunkohleschluff und Quarzsand sind beispielsweise südwestlich von Frankfurt sowie im Nordwesten des Scharmützelsees erfasst. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, fasst ein Überlagerungsschema alle oberflächennahen Überlagerungsfälle anschaulich zusammen. Ein zusätzlicher Profilschnitt quert in seinem Südwest-Nordost-Verlauf die Ostbrandenburger Senke und Schwelle, die Guben-Fürstenwalder Störungszone, die Mecklenburg-Brandenburg Senke und die Vorsudetische Monokline.
Blatt Neubrandenburg wird vollständig vom Norddeutschen Tiefland abgedeckt, wobei die Mecklenburger Seenplatte im Westen des Kartenausschnitts angeschnitten ist. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt. Da sich z. T. mehrere glaziale Serien (Grundmoräne, Endmoräne, Sander, Urstromtal) überlagern, gestaltet sich die Landschaft formenreich mit einer Vielzahl von Seen. Bei den eiszeitlichen Ablagerungen der Saale- und Weichselkaltzeit handelt es sich um Geschiebemergel/-lehm der Grundmoränen, Aufschüttungen der Endmoränen, glazilimnische Beckenschluffe, fluviatile und glazifluviatile Sande sowie äolische Flug- und Dünensande. In den Niederungen werden die pleistozänen Ablagerungen z. T. von holozänen Fluss-, Moor- und Seesedimenten überlagert. Die quartäre Sedimentdecke ist im Bereich des Norddeutschen Tieflandes sehr mächtig. Nur vereinzelt und regional eng begrenzt treten tertiäre oder kreidezeitliche Schichten des Untergrundes zu Tage. Neben der Legende, die über Alter, Petrographie und Genese der geologischen Einheiten informiert, fasst ein Überlagerungsschema alle oberflächennahen Überlagerungen übersichtlich zusammen. Zwei Profilschnitte gewähren zusätzliche Einblicke in den Aufbau des Untergrundes. Im Ost-West-Verlauf sind verschiedene Salzstrukturen angeschnitten. Das erste Profil erstreckt sich in der Nordhälfte des Kartenblattes und kreuzt den Salzstock Wesenberg sowie das Salzkissen Brunstorf. Das zweite Profil, in der Südhälfte der Karte, schneidet die Salzstöcke Netzeband, Zühlen, Storkow sowie die Salzkissen Gransee, Klaushagen-Flieth und Gramzow.
Auf Blatt Magdeburg ist das Norddeutsche Tiefland beiderseits der Elbe (Altmark, Fläming, Colbitz-Letzlinger Heide) erfasst - mit der Flechtinger-Rosslauer-Scholle und der Subherzynen Senke im Südwesten. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt, wobei sich mehrere glaziale Serien (Grundmoräne, Endmoräne, Sander, Urstromtal) überlagern. In der Karte ist die Saale-kaltzeitliche Hochfläche von Altmark und Fläming erfasst, die das Gebiet Nordwest-Südost quert. Zudem treten großflächige Überlagerungen durch äolische Sande der Weichsel-Kaltzeit auf. In den Niederungen von Elbe und Havel sowie ihrer Nebenflüsse lagern neben den fluviatilen bzw. glazifluviatilen Sanden des Pleistozäns auch holozäne Moor- und Auesedimente. In der Südwestecke des Kartenblattes, in der Umgebung von Magdeburg, ragen einige lokal eng begrenzte Aufbrüche älterer Gesteine (Karbon bis Trias) unter der quartären Deckschicht zu Tage. Bei Gommern sind die ältesten Gesteine des Kartenblattes aufgeschlossen (Quarzite des Unterkarbons). Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, fasst ein Überlagerungsschema alle oberflächennahen Überlagerungen übersichtlich zusammen. Zwei geologische Schnitte gewähren zusätzliche Einblicke in den Aufbau des Untergrundes. Ein Profil beginnt in der Subherzynen Senke und kreuzt die Flechtingen-Roßlauer Scholle bis zum Wittenberger Abbruch, die Altmark-Fläming-Senke und den Prignitz-Lausitz-Wall. Der zweite Schnitt verläuft weiter im Nordwesten, quert ebenfalls die Subherzyne Senke und die Flechtingen-Roßlauer Scholle. Letztere wird durch den Haldenslebener Abbruch von der Calvörder Scholle getrennt, bevor am Gardelegen-Wittenberger Abbruch die Altmark-Senke beginnt.
Die Bodengroßlandschaften (BGL) sind landschaftsgenetisch oder strukturgeologisch bedingte und morphologisch erkennbare Raumeinheiten mit ähnlichen klimatischen Bedingungen. Die Kenntnis der bestimmenden regional wirksamen Merkmale erlaubt es, diese sowohl bei der Kartierung wie auch bei der Zuweisung von Merkmalsausprägungen und Eigenschaften einzusetzen. Die Bodengroßlandschaften sind damit Hilfsmittel der systematischen Bodenkartierung, Beschreibung von Bodenformen und Qualitätssicherung. In Niedersachsen werden folgende Bodengroßlandschaften dargestellt: Inseln, Watt und Küstenmarschen des Küstenholozäns, die überregionalen Flusslandschaften, Auen und Niederterrassen, Talsandniederungen und Urstromtäler, Geestplatten und Endmoränen der Geest, Lössbörde und Bördenvorland des Bergvorlandes, Lössbecken und Höhenzüge des Berglandes und Submontanes und Montanes Mittelgebirge.
Die Bodengroßlandschaften (BGL) sind landschaftsgenetisch oder strukturgeologisch bedingte und morphologisch erkennbare Raumeinheiten mit ähnlichen klimatischen Bedingungen. Die Kenntnis der bestimmenden regional wirksamen Merkmale erlaubt es, diese sowohl bei der Kartierung wie auch bei der Zuweisung von Merkmalsausprägungen und Eigenschaften einzusetzen. Die Bodengroßlandschaften sind damit Hilfsmittel der systematischen Bodenkartierung, Beschreibung von Bodenformen und Qualitätssicherung. In Niedersachsen werden folgende Bodengroßlandschaften dargestellt: Inseln, Watt und Küstenmarschen des Küstenholozäns, die überregionalen Flusslandschaften, Auen und Niederterrassen, Talsandniederungen und Urstromtäler, Geestplatten und Endmoränen der Geest, Lössbörde und Bördenvorland des Bergvorlandes, Lössbecken und Höhenzüge des Berglandes und Submontanes und Montanes Mittelgebirge.
Die Bodengroßlandschaften (BGL) sind landschaftsgenetisch oder strukturgeologisch bedingte und morphologisch erkennbare Raumeinheiten mit ähnlichen klimatischen Bedingungen. Die Kenntnis der bestimmenden regional wirksamen Merkmale erlaubt es, diese sowohl bei der Kartierung wie auch bei der Zuweisung von Merkmalsausprägungen und Eigenschaften einzusetzen. Die Bodengroßlandschaften sind damit Hilfsmittel der systematischen Bodenkartierung, Beschreibung von Bodenformen und Qualitätssicherung. In Niedersachsen werden folgende Bodengroßlandschaften dargestellt: Inseln, Watt und Küstenmarschen des Küstenholozäns, die überregionalen Flusslandschaften, Auen und Niederterrassen, Talsandniederungen und Urstromtäler, Geestplatten und Endmoränen der Geest, Lössbörde und Bördenvorland des Bergvorlandes, Lössbecken und Höhenzüge des Berglandes und Submontanes und Montanes Mittelgebirge.
Blatt Wittenberge wird vollständig vom Norddeutschen Tiefland eingenommen, wobei die Mecklenburger Seenplatte im Nordosten des Kartenausschnitts angeschnitten ist. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt. Da sich z. T. mehrere glaziale Serien (Grundmoräne, Endmoräne, Sander, Urstromtal) überlagern, gestaltet sich die Landschaft formenreich mit einer Vielzahl von Seen. Das dargestellte Gebiet zwischen Elbe im Südwesten und Mecklenburger Seenplatte im Nordosten wird von einer quartären Sedimentdecke überzogen. Zu den pleistozänen Ablagerungen der Saale- und Weichselkaltzeit zählen: glazilimnische Beckenschluffe, Geschiebelehm der Grundmoränen, Aufschüttungen der Endmoränen, fluviatile und glazifluviatile Ablagerungen sowie äolische Flug- und Dünensande. Interglaziale Warmzeiten (Eem und Holstein) sind durch limnische Sedimente wie Kalk- und Detritusmudde belegt. In den Niederungen werden die pleistozänen Ablagerungen z. T. von holozänen Fluss-, Moor- und Seesedimenten überlagert. Die quartäre Sedimentdecke ist im Bereich des Norddeutschen Tieflandes sehr mächtig. Nur vereinzelt und regional eng begrenzt treten ältere Schichten des präquartären Untergrundes (tertiäre oder kreidezeitliche Sedimente) zu Tage. Neben der Legende, die über Alter, Petrographie und Genese der geologischen Einheiten informiert, fasst ein Überlagerungsschema alle oberflächennahen Überlagerungen übersichtlich zusammen. Zwei Profilschnitte gewähren zusätzliche Einblicke in den Aufbau des Untergrundes, wobei verschiedene Salzstrukturen angeschnitten werden. Das erste Profil kreuzt in seinem Nordwest-Südost-Verlauf die Salzstöcke von Krask, Werle, Helle und Netzeband. Der zweite Schnitt beginnt im Süden und schneidet in nördliche Richtung den Salzstock Werle und das Salzkissen Schlieven.
Gemäß § 58 Brandenburger Naturschutzgesetz ist das Land Brandenburg gesetzlich zur Aufstellung von Pflege- und Entwicklungsplänen (PEP) in den Großschutzgebieten (GSG) verpflichtet. Die Pflege- und Entwicklungspläne werden als Handlungskonzepte für Schutz, Pflege und Entwicklung der Großschutzgebiete in Brandenburg erstellt. Bearbeitungsgebiet ist der Naturpark Hoher Fläming einschließlich aller Biotope, die von der GSG-Grenze geschnitten werden. Der Naturpark Hoher Fläming weist zahlreiche geomorphologische Besonderheiten der Altmoränenlandschaft auf, wie die spektakulär steile Hangkante, die sich von Wollin bis Fredersdorf zieht, an der die Altmoränenlandschaft in das Baruther Urstromtal abfällt. Neben einer weiträumigen, steinreichen Agrarlandschaft wird der Naturpark durch große unzerschnittene Wälder und Forsten geprägt, in denen u.a. Schwarzstorch, Mittelspecht und zahlreiche seltene Fledermausarten leben. Die Hochfläche entwässert über teils schluchtartig eingeschnittene Bachtäler in das Urstromtal. Die dort fließenden naturnahen Bäche zählen zu den schutzwürdigsten Brandenburgs. Sie werden von Quellen, Mooren, Feuchtwiesen und Auwäldern begleitet. Die Bachtäler sind Lebensraum für zahlreiche seltene und gefährdete Tierarten, wie Quelljungfer, Edelkrebs, Bachneunauge, Bergmolch und Wachtelkönig. Die Pflege- und Entwicklungsplanung gliedert sich in Vorstudie und Hauptstudie. Wesentliche Bestandteile der Vorstudie waren Datenzusammenstellung, Gebietscharakteristik, Erstellung von Leitbildern und eines Gesamtzielsystem sowie Festlegung des Bearbeitungsbedarfs und der Bearbeitungstiefe für die Hauptstudie. Wesentliche Inhalte der Hauptstudie sind: - Optimierung des Landschaftswasserhaushalts - Erhaltung und Entwicklung der Biotop- und Artenvielfalt - Bewahrung und Entwicklung einer eiszeitliche geprägten und historisch gewachsenen Kulturlandschaft - Ausbau eines regional angepassten und naturverträglichen, landschaftsbezogenen Tourismus.
Karte 01.19.1 Moorgebiete und Bodentypen Aktuell sind etwa 740 ha Moorböden in Berlin zu finden, die sich hauptsächlich in den weniger dicht besiedelten und bebauten Randbezirken befinden. Insgesamt wurden 76 Moorstandorte ausgewiesen. Ein Großteil der Standorte liegt im Urstromtal in den Niederungsbereichen, wie etwa die Moore im Bezirk Köpenick (z. B. Gosener Wiesen). Außerdem befinden sich weitere bedeutende Moorflächen im Tegeler Fließtal sowie im NSG Lietzengrabenniederung/Bogenseekette, im Grunewald (z. B. Teufelsfenn) und in Teilen Spandaus (z.B. Großer und Kleiner Rohrpfuhl). Die Moorflächengrößen der einzelnen kartierten Standorte unterscheiden sich deutlich. Die größte zusammenhängende Moorfläche in Berlin wird von den Gosener Wiesen mit mehr als 200 ha Fläche eingenommen. Im Gegensatz dazu nehmen die Moorflächen im Gebiet „Kleines Fenn“ und „Kleines Luch“ in Schmöckwitz zusammen nur etwa 0,3 ha Fläche ein. Auch in den Moormächtigkeiten existieren große Unterschiede zwischen einzelnen Moorgebieten. Die geringste maximale Mächtigkeit wurde mit 0,7 m kartiert („Moor am Plumpengraben“). Die größte maximale Moormächtigkeit mit 12,60 m wurde im Zentrum der Kleinen Pelzlaake erbohrt. Etwa 600 ha der kartierten Moorflächen fällt in die Bodenabteilung der „echten“ Moore nach bodenkundlicher Kartieranleitung (Ad-hoc-AG Boden 2005, Tabelle 1). Der Rest wird hauptsächlich von begrabenen Moorböden eingenommen, deren ehemals oberflächlich anstehende Torfe durch anthropogene Aufträge überdeckt wurden. Dies geht häufig mit einsetzender Mineralbodenbildung (z. B. Gley über Niedermoor) einher, wie beispielsweise im randlichen Erpetal. Aufgrund gestiegener Wasserstände, teilweise auch durch Moorsackung verursacht, kam es vielfach zu erneut einsetzender Torfbildung, wie z. B. auf der Meiereiwiese/Pfaueninsel. Ein kleiner Teil der kartierten Moorflächen gehört zur Klasse der überstauten, subhydrischen Böden mit aktueller organischer Muddebildung über Torf. Die Hälfte der kartierten echten Moorböden besteht bodenkundlich aus sog. „Normtypen“, die flurnahe Wasserstände besitzen und aktuell keiner dauerhaften Entwässerung ausgesetzt sind (Tabelle 2). Beispiele für Moorböden mit derzeit flurnahen Wasserständen findet man z. B. in weiten Teilen des Tegeler Fließ oder auf dem Schmöckwitzer Werder. Viele dieser Moorflächen enthalten reliktische Vererdungserscheinungen in ihren Oberbodenhorizonten, die auf deutlich niedrigere vergangene Moorwasserstände, z. B. infolge stärkerer Entwässerung, hindeuten. Demgegenüber besteht die andere Hälfte der Berliner Moorbodenflächen aus aktuell entwässerten und degradierten Mooren, die einen erst vor kurzer Zeit entstandenen (rezenten) Vererdungshorizont an der Oberfläche von 1 dm und mehr aufweisen. Die Moore, die am stärksten degradiert und entwässert sind, liegen hauptsächlich im westlichen Grunewald. Aufgrund Ihrer Lage im Absenktrichter der Grundwasserförderung für die Trinkwassergewinnung befinden sich die lokalen Moorwasserspiegel hier vor allem in den Randbereichen oft mehr als 1 m unter der heutigen Mooroberfläche. Über die Moorboden(-sub)-typen ist eine erste Einschätzung des ökologischen Moor- und Bodenzustandes möglich. Prinzipiell entsprechen die „Normtypen“ (Tab. 1) dem Zielzustand und die entwässerten Erd- und Mulmmoore zeigen Degeneration bzw. Handlungsbedarf an. Die „Normtypen“ bieten den Menschen wertvolle Ökosystemleistungen, während entwässerte Moorböden nicht nur weniger „leistungsfähig“ sind, sie sind als Quellen von Treibhausgasen (Kohlendioxid) oder Nährstoffen (z. B. Nitrat; Sulfat) sogar eine Umweltbelastung und schädigen das Klima sowie Grundwasser und Gewässer. Für eine differenzierte Beurteilung von verschiedenen Ökosystemleistungen reicht die Ebene der Boden(-sub)-typen nicht mehr aus und es müssen weitere Parameter herangezogen werden. Eine Niedermoor (Normtyp) kann z. B. durch frühere Entwässerungsphasen tiefgreifend vererdet und eutrophiert sein. Obwohl es heute flurnahe Wasserstände zeigt, hat es an ökologischem Wert verloren, da seltene eutrophierungsempfindliche Pflanzenarten irreversibel verdrängt wurden. Karte 01.19.2 Kohlenstoffvorräte der Moore Die gespeicherte C-Menge, die für die untersuchten Moorböden berechnet wurde, beträgt über 1 Mio. Tonnen. Damit haben die Berliner Moore während des gesamten Holozäns der Atmosphäre mehr als 4 Mio. Tonnen CO 2 entzogen und so zur globalen Abkühlung beigetragen (Holden 2005). Die Größe der C-Pools und damit die entzogenen CO 2 -Mengen der Berliner Moorböden schwanken stark und hängen einerseits von der jeweiligen Moorflächengröße und der -mächtigkeit, andererseits von den chemisch-physikalischen Bodeneigenschaften ab. Es ist bemerkenswert, dass die Kohlenstoffvorräte der untersuchten Moore mit einem Flächenanteil von 0,8 % somit ein Fünftel der gesamten Kohlenstoffvorräte in den Böden Berlins ausmachen. Die für alle Berliner Böden aus der Karte Kohlenstoffvorräte 01.06.6 ermittelten Kohlenstoffvorräte von ca. 5 Mio. t C zeigen zumindest diese Größenordnung, wurden aber mit einer anderen, wesentlich ungenaueren Methode nur überschlägig ermittelt. In den Moorböden der Gosener Wiesen ist aufgrund der großen Fläche der größte C-Pool mit über 150.000 t (entspr. 559.000 t CO 2 ) gespeichert. Durch ihre vergleichsweise geringen Moormächtigkeiten liegen die relativen Speichermengen hier aber mit weniger als 800 t/ha eher im unteren Bereich der Berliner Moorböden. Die flächeneffektivste C-Speicherung findet man in den mächtigen Moorböden der Kleinen Pelzlaake. Hier wurde eine maximale C-Speichermenge von mehr als 6.000 t/ha im Moorzentrum errechnet. Die durchschnittliche C-Speicherleistung in der kleinen Pelzlaake liegt bei über 3.700 t/ha. Daneben existieren weitere bedeutende C-Pools in Moorböden, z. B. in den Mooren des Tegeler Fließ.
Origin | Count |
---|---|
Bund | 16 |
Land | 212 |
Type | Count |
---|---|
Förderprogramm | 3 |
Kartendienst | 13 |
Taxon | 1 |
Text | 161 |
unbekannt | 41 |
License | Count |
---|---|
geschlossen | 204 |
offen | 13 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 219 |
Englisch | 11 |
Resource type | Count |
---|---|
Archiv | 5 |
Datei | 4 |
Dokument | 41 |
Keine | 105 |
Webdienst | 9 |
Webseite | 90 |
Topic | Count |
---|---|
Boden | 199 |
Lebewesen & Lebensräume | 210 |
Luft | 142 |
Mensch & Umwelt | 216 |
Wasser | 205 |
Weitere | 219 |