API src

Found 424 results.

Discursive fragmentation of the international forest regime complex: Towards a better understanding of multi-level forest policy discourses

This subproject aims to analyze the fragmentation of forest policy at both an international and national level for the selected countries, employing a discourse analysis approach. It is split into two sub-subprojects (SSPs). 'SSPa' conducts an analysis of discursive genealogies of forest policy in Germany, Sweden, and the US. 'SSPb' investigates the history of forest related discourses in three global environmental policy processes (UNFF, CBD, and UNFCCC). In doing so, both SSPs follow a three step procedure: In the first work package, relevant literature is reviewed and a theoretical and analytical framework is developed. In the second work package, empirical data (mostly formal and informal policy documents) are gathered and analyzed. In the third work package, emphasis is placed on the role of political 'elites' in the creation of fragmented forest policy discourses at different levels; in-depth interviews with policy stakeholders and experts add another perspective to the analysis in this work package. The project is expected to develop a new understanding not only of the fragmentation of multi-level and multi-sector forest policy discourses, but also of the way in which 'discourse elites' interact with and within these discourses. The results of the work packages will be published in peer reviewed journals and discussed with policy stakeholders and scientists in conferences and workshops.

The importance of peripheral oceanic processes in the Labrador Sea for the Atlantic meridional overturning circulation

The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia

In bog ecosystems, vegetation controls key processes such as the retention of carbon, water and nutrients. In northern hemispherical bogs, a shift from Sphagnum- to vascular plant-dominated vegetation is often traced back to Climate Change and increased anthropogenic nitrogen deposition and coincides with substantially reduced capacities in carbon, water and nutrient retention. In southern Patagonia, bogs dominated by Sphagnum and vascular plants coexist since millennia under similar environmental settings. Thus, South Patagonian bogs may serve as ideal examples for the long-term effect of vascular plant invasion on carbon, water and nutrient balances of bog ecosystems. The contemporary balances of carbon and water of both a bog dominated by Sphagnum and vascular plants are determined by CO2- H2O and CH4 flux measurements and an estimation of lateral water losses as well as losses via dissolved organic and inorganic carbon compounds. The high time resolution of simultaneous eddy covariance measurements of CO2 and H2O in both bog types and the strong interaction between climatic variables and the physiology of bog plants allow for direct comparisons of carbon and water fluxes during cold, warm, dry, wet, cloudy or sunny periods. By the combination with leaf-scale measurements of gas exchange and fluorescence, plant-physiological controls of photosynthesis and transpiration can be identified. Long-term peat accumulation rates will be determined by carbon density and age-depth profiles including a characterization of peat humification characteristics. A reciprocal transplantation experiment with incorporated shading, liming and labeled N addition treatments is conducted to explore driving factors affecting competition between Sphagnum and vascular plants as well as the interactions between CO2-, CH4-, and water fluxes and decisive plant functional traits affecting key processes for carbon sequestration and nutrient cycling. Decomposition rates and driving below ground processes are analyzed with a litter bag field experiment and an incubation experiment in the laboratory.

DFG Trilateral collaboration Deutschland-Israel-Palestine: Wastewater from Olive Oil Mills in Israel and Palestine: Interactions with Soil, Organic Contaminants and Mechanisms of Incorporation into Soil

Due to the often practised uncontrolled disposal into the environment, olive oil production wastewater (OPWW) is presently a serious environmental problem in Palestine and Israel. The objectives of this interdisciplinary trilateral research project are (i) to understand the mechanisms of influence of the olive oil production wastewater on soil wettability, water storage, interaction with organic agrochemicals and pollutants; (ii) monitor short-term and long-term effects of OPWW land application in model laboratory and field experiments; (iii) identify the components responsible for unwanted changes in soil properties and (iv) analyse the mechanisms of association of OPWW OM with soil, the interplay between climatic conditions, pH, presence of multivalent cations and the resulting effects of land application. Laboratory incubation experiments, field experiments and new experiments to study heat-induced water repellency will be conducted to identify responsible OPWW compounds and mechanisms of interaction. Samples from field experiments and laboratory experiments are investigated using 3D excitation-emission fluorescence spectroscopy, thermogravimetry-differential thermal analysis-mass spectrometry (TGA-DSC-MS), LC-MS and GC-MS analyses. We will combine thermal decomposition profiles from OPWW and OPWW-treated soils in dependence of the incubation status using TGA-DSC-MS, contact angle measurements, sorption isotherms and the newly developed time dependent sessile drop method (TISED). The resulting process understanding will open a perspective for OPWW wastewater reuse in small-scale and family-scale olive oil production busi-nesses in the Mediterranean area and will further help to comprehend the until now not fully un-ravelled effects of wastewater irrigation on soil water repellency.

Forest management in the Earth system

The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest

Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Dynamic (redox) interfaces in soil - Carbon turnover in microbial biomass and flux into soil organic matter

Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.

Beach sand deposits on the coast of southern Norway as a natural experimental setup to test hypotheses on soil development and luminescence dating

Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.

1 2 3 4 541 42 43