Das Projekt "Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie durchgeführt. Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.
Das Projekt "Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Understanding transport of contaminants is fundamental for the management of groundwater re-sources and the implementation of remedial strategies. In particular, mixing processes in saturated porous media play a pivotal role in determining the fate and transport of chemicals released in the subsurface. In fact, many abiotic and biological reactions in contaminated aquifers are limited by the availability of reaction partners. Under steady-state flow and transport conditions, dissolved reactants come into contact only through transverse mixing. In homogeneous porous media, transverse mixing is determined by diffusion and pore-scale dispersion, while in heterogeneous formations these local mixing processes are enhanced. Recent studies investigated the enhancement of transverse mixing due to the presence of heterogeneities in two-dimensional systems. Here, mixing enhancement can solely be attributed to flow focusing within high-permeability inclusions. In the proposed work, we will investigate mixing processes in three dimensions using high-resolution laboratory bench-scale experiments and advanced modeling techniques. The objective of the proposed research is to quantitatively assess how 3-D heterogeneity and anisotropy of hydraulic conductivity affect mixing processes via (i) flow focusing and de-focusing, (ii) increase of the plume surface, (iii) twisting and intertwining of streamlines and (iv) compound-specific diffusive/dispersive properties of the solute species undergoing transport. The results of the experimental and modeling investigation will allow us to identify effective large-scale parameters useful for a correct description of conservative and reactive mixing at field scales allowing to explain discrepancies between field observations, bench-scale experiments and current stochastic theory.
Das Projekt "Methane transport to the ocean from the Mid-Atlantic Ridge, 2°S to 11°S" wird vom Umweltbundesamt gefördert und von IFM-GEOMAR Leibniz-Institut für Meereswissenschaften durchgeführt.
Das Projekt "B 2.3: Transport of agrochemicals in a watershed in Northern Thailand - Phase 3" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. Land use changes of the last decades in the mountainous regions of Northern Thailand have been accompanied by an increased input of agrochemicals, which might be transferred to rivers by surface and/or subsurface flow. Where the river water is used for household consumption, irrigation and other purposes, agrochemical losses pose a serious risk to the environment and food safety. In the first and the second phase, subproject B2 collected data on and gained knowledge of the vertical and lateral transport processes that govern the environmental fate of selected agrochemicals at the plot and the hillslope scale (Ciglasch et al., 2005; Kahl et al., 2006). In the third phase, B2.3 will turn from the hillslope to the watershed scale. For simulation of water flow and pesticide transport the SWAT model (Neitsch et al., 2002b) will be adapted and used. The study area will be the Mae Sa watershed (138 km2), which includes the Mae Sa Noi subcatchment where B2 carried out detailed investigations during the last two phases. The specific focus of the subproject will be the parameterization and calibration of the SWAT model and its integration into the model network of the SFB. The SFB database has been established and can be used for model parameterization. In addition, high-quality geo-data are available from the Geoinformatic and Space Technology Development Agency (GISTDA) in Chiang Mai. For model calibration, discharge measurements are available for the Mae Sa Noi subcatchment (12 km2) and for the neighboring Mae Nai subcatchment (18 km2). To collect data on the Mae Sa watershed discharge, at the very beginning of the third phase gauging stations will be established in a midstream position and at the outlet of the watershed. Pesticide fluxes will be measured at each gauging station as well as in the Mae Sa Noi subcatchment, where B2.2 has operated two flumes equipped with automatic discharge-proportional water samplers since 2004. Rainfall distribution and intensity will be monitored with a net of automatic rain gauges. Hydrograph separation will be performed using soil and river temperatures (Kobayashi et al., 1999). Within the watershed temperature loggers will be installed at different soil depths to measure the temperature of the different discharge components. Already at the beginning of the second year of the third phase we will start to couple the SWAT model with land use and farm household models of the SFB and to use the model to assess the effect of land use and land management changes on the loss of pesticides to surface waters.
Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.
Das Projekt "A8:Transporte und Flüsse durch die Bodengrenzschicht" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. The major goal of this new subproject is to estimate transport and fluxes of solutes between the bottom boundary layer, the stratified interior ocean and the ocean mixed layer on the continental slope and shelf regions of the Peruvian and Mauritanian Oxygen Minimum Zones (OMZ). The objectives will be achieved by estimating diapycnal and advective fluxes using two different methodological approaches: The first is basedon the measurement of the radium isotope distribution in sediments and in the water column. The second approach will use a combination of oceanographic measuring systems for the determination of turbulences, currents and hydrography. Subproject A8 will contribute to the understanding of the solute budget of the OMZ's and establishes a link between the benthic and pelagic research foci within the SFB 754.
Das Projekt "Effect of lake level rise on vertical transport and mixing processes in Lake Van (Turkey)" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Limnologisches Institut durchgeführt. Lake Van ist der größte See der Türkei. Er ist abflusslos und sein Wasser ist stark salzhaltig (21 g kg-1). Wegen des hohen Salzgehaltes ist zu erwarten, dass vertikale Mischungsprozesse im Lake Van sehr sensitiv auf erhöhte Süßwassereinträge reagieren. In diesem Projekt werden die für den vertikalen Transport im Lake Van verantwortlichen Prozesse identifiziert und der vertikale Austausch quantifiziert. Es wird untersucht, wie sich Seespiegelschwankungen (als Indiz für veränderte hydrologische Bedingungen), auf die Tiefenwassererneuerung und die Mischungsprozesse auswirken. Die Arbeit wird ihre Analysen auf Informationen aus einem breiten Spektrum von Umwelttracern stützen (Temperatur, Salzgehalt, Lichttransmission, gelöster Sauerstoff, SF6, CFC-12, 3H, 3He und weitere Edelgase). Die entsprechenden Daten und Proben für Laboranalysen werden in zwei Feldkampagnen auf dem Lake Van erhoben. Der Seespiegelanstieg des Lake Van in den letzen Jahrzehnten bietet eine ausgezeichnete Möglichkeit, die Auswirkung von Veränderungen in den hydrologischen Bedingungen im Einzugsgebiet auf die Mischungsdynamik in salzhaltigen Seen zu untersuchen. Insbesondere ist dies der Fall, da am Lake Van neue Tracermessungen mit einem bereits vorhandenen Datensatz verglichen werden können, der 1989 kurz nach Beginn des letzten signifikanten Seespiegelanstiegs erhoben wurde. Eine Veränderung der Mischungsdynamik hat eine Auswirkung auf die Wechselwirkungen im Ökosystem und kann so Signale in Sedimentkernen beeinflussen. Daher liefert dieses Projekt wichtige Hintergrundinformation für die Interpretation paläolimnologischer Daten aus Sedimentkernen. Dies ist von besonderem Interesse, da der Lake Van als vielversprechender Ort für ein 'International Continental Drilling Project' (ICDP) ausgesucht wurde, um Klimaveränderung mit Hilfe von Sedimentkernen zu studieren. Darüber hinaus beabsichtigt die Gruppe für Umweltisotope an der ETH/EAWAG (Schweiz) Edelgase im Porenwasser von Lake Van - Sedimenten zu untersuchen. Das Ziel dieser Arbeiten ist eine Rekonstruktion der Mischungsbedingungen im Lake Van und der paläoklimatischen Bedingungen während des Holozäns (das Projekt ist eingereicht bei der Swiss Science Foundation SNF). Das Project MIXVAN wird eng mit der Gruppe für Umweltisotope an der ETH/EAWAG (Schweiz) zusammenarbeiten, die dem Projekt die Nutzung ihrer Labors zur Analyse von transienten Tracern ermöglicht.
Das Projekt "Analysis and modeling of soil shrinkage and swelling dynamics as a function of predrying intensity and frequency and its influence on soil hydraulic properties" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Ökosystemforschung durchgeführt. Knowledge about changes in soil pore structure during shrinkage and/or swelling processes improves the understanding and prediction of water flow and solute transport. The rearrangement of soil particles and aggregates modifies the original pore size distribution, and especially forms soil cracks. Soil cracks lead to a non-uniform soil structure and improve macropore flux. However, the geometry of soil cracks within the soil matrix upon wetting/drying cycles and its influence on hydraulic properties is not clear. Therefore, in this study, we investigate the changes of the geometry of soil cracks and of two-dimension shrinkage (i.e. vertical and horizontal) under shrinkage/swelling frequency and intensity and evaluate how far they influence hydraulic soil properties.
Das Projekt "MeetBike - Europäische Konferenz für Fahrradverkehr und Netzwerk fahrradfreundlicher Städte in Dresden 3./4. April 2008" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List", Institut für Verkehrsplanung und Straßenverkehr, Lehrstuhl für Integrierte Verkehrsplanung und Straßenverkehrstechnik (IVS) durchgeführt. Das Projekt im Rahmen des EU-Programms Intelligent Energy Europe diente zur Vorbereitung, Durchführung sowie Verbreitung der Ergebnisse einer europäischen Konferenz MeetBike. Die Konferenz zielte darauf ab, vor dem Hintergrund der Ausschöpfung von Energieeinsparungsreserven Wissen und Erfahrungen auf dem Gebiet der Radverkehrsförderung auszutauschen und die Möglichkeiten für eine stärkere Vernetzung europäischer Städte und Regionen zu diskutieren. Sie wurde mit einer Veranstaltung zum Thema 'Interdependenzen zwischen Fahrrad- und ÖPNV-Nutzung' im Rahmen eines BMVBS-Projektes kombiniert. Partner der Konferenz waren die Stadt Dresden, die Dresdner Verkehrsbetriebe (DVB) sowie der Verkehrsverbund Oberelbe (WO).
Das Projekt "Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Geowissenschaften, Institut für Meereskunde durchgeführt. Labrador Sea Water (LSW) formed in the Labrador Sea constitutes the lightest contribution to North Atlantic Deep Water (NADW), a conglomerate of water masses that form the cold return flow of the Atlantic meridional overturning circulation (MOC). Climate variability can be modulated by changes in the MOC strength; such changes are thought to be linked to variations in LSW formation. The Deep Western Boundary Current (DWBC) is the main southward pathway for newly formed LSW. Topographic obstacles at the southern exit of the Labrador Sea split the DWBC into an upper branch carrying LSW through Flemish Pass (1200m sill depth) and a branch carrying all NADW components along the continental slope around Flemish Cap. Up to now, transports through Flemish Pass and their contribution to the MOC are still uncertain, the importance of the pass for the export of LSW and its associated variability are yet unknown. In this project the transports through Flemish Pass will be quantified, and mechanisms driving and governing the variability of the flow will be investigated. The project focuses on the following questions: What is the magnitude of transports for waters passing through Flemish Pass and their associated variability? Which processes drive the variability? What is the relevance of the deep water export through Flemish Pass for the MOC, especially when compared to the DWBC export? Are both deep water export pathways (through Flemish Pass or around Flemish Cap) coupled? What processes govern the inflow of deep water into Flemish Pass? To answers these questions, ship-based measurements and time series from moored instruments in the Flemish Pass will be analyzed in conjunction with output from two state-of-the-art Ocean models run at high-resolution.
Origin | Count |
---|---|
Bund | 227 |
Type | Count |
---|---|
Förderprogramm | 227 |
License | Count |
---|---|
offen | 227 |
Language | Count |
---|---|
Deutsch | 227 |
Englisch | 193 |
Resource type | Count |
---|---|
Keine | 166 |
Webseite | 61 |
Topic | Count |
---|---|
Boden | 208 |
Lebewesen & Lebensräume | 199 |
Luft | 181 |
Mensch & Umwelt | 227 |
Wasser | 188 |
Weitere | 227 |