API src

Found 213 results.

Related terms

European Investment Bank - Water Management

BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Mineral magnetism of shocked ferrimagnetic minerals

Magnetic properties of ferrimagnetic minerals depend on their crystal lattice, anisotropy, chemical composition and grain size. The latter parameter is strongly controlled by microstructures, which are significant for the interpretation of the magnetic properties of shocked magnetic minerals. Fracturing and lattice defects are the main causes for magnetic domain size reduction and generate an increase in coercivity and the suppression of magnetic transitions (e.g. 34 K transition in pyrrhotite, Verwey transition in magnetite).Especially for an adequate investigation of shock-induced modifications in ferromagnetic minerals, a combination of microstructural and magnetic measurements is therefore essential.This project focusses on two significant aspects of extreme conditions - the consequence of shock waves on natural material on Earth and on the magnetic mineralogy of exotic magnetic minerals in iron meteorites. In order to obtain general correlations between deformation structures and magnetic properties, the specific magnetic properties and carriers as well as microstructures of samples from two impact structures in marine targets (Lockne and Chesapeake Bay) will be compared with shocked magnetite ore and magnetite-bearing target lithologies from outside the crater (Lockne) as well as from undeformed megablocks within the crater (Chesapeake Bay). We will test the hypothesis if shock-related microstructures and associated magnetic properties can significantly be overprinted by postshock hydrothermal alteration. We especially want to focus on the Verwey transition (TV) as lower TVs are described for shocked impact lithologies. Hence, the main focus of this study lies on magneto-mineralogical investigations which combine low- and high-temperature magnetic susceptibility and saturation isothermal remanent magnetization with mineralogical and microstructural investigations. The same methods will then be used for the investigation of iron meteorites, whose magnetic properties are often controled by exotic magnetic minerals like cohenite, schreibersite and daubreelite in addition to the metal phases. Magnetic transition temperatures of those phases are poorly documented in relation to their chemical composition as well as to their crystallographic and microstructural configuration. For a general understanding of shock-related magnetization processes in extraterrestrial and terrestrial material, however, it is crucial to obtain a general correlation between the initial 'unshocked' state and the subsequent shock- and alteration-related overprints.

Water use characteristics of bamboo (South China)

Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

Regulation der photosynthetischen Effizienz der Biomassebildung im dynamischen Lichtklima bei exemplarischen Grünalgen und Diatomeen

In dem Vorhaben wird untersucht, wie wirksam die absorbierte Lichtenergie in Biomasse konvertiert wird. Vergleichend werden Grünalgen und Diatomeen unter verschiedenen Licht- und Nährstoffbedingungen studiert. Auf diese Weise können die metabolischen Kosten unter Nährstoffmangel oder anderen produktivitätsbegrenzenden Bedingungen studiert werden. So wird auch die Säureanpassung ausgewählter Phytoplankter untersucht, um die Biomassebildung in extrem sauren Tagebaurestseen auf physiologischer Ebene zu verstehen. Es konnte gezeigt werden, dass unter Stickstoffmangel die Überführung anorganischen Kohlenstoffs in Biomassebildung durch eine Veränderung der makromolekularen Zusammensetzung der Zellen ähnlicher Effizienz stattfindet, wie unter optimaler Stickstoffversorgung. Dies führt zu einer ökologisch bedeutsamen Teilentkopplung des C und N Kreislaufs im Ökosystem. Ähnliches beobachtet man auch bei der Anpassung von Phytoplanktonalgen an extrem saure Bedingungen wie man sie in sauren Tagebaurestseen vorfindet.

Effects of canopy structure on salinity stress in cucumber (Cucumis sativus L.)

Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.

Forschergruppe (FOR) 1320: Crop Sequence and Nutrient Acquisition from the Subsoil, Water as medium for nutrient distribution: Monitoring water distribution between subsoil and topsoil considering roles of biopores and plants, by MRT and pressure probes (WatMed)

Magnetic resonance tomography (MRT) on microcosm soil cores (200 mm Ø) used for CeMiX, comprising naturally stacked subsoil down to 700 mm plus topsoil from CeFiT, will be implemented at a laterally partially open Split 1.5 T magnet, with intended final in-plane spatial resolution of 200 Micro m. Three-dimensional biopore distributions and dynamics of their formation within the cores will be determined non-invasively and compared to complementing CT analyses of SP 2. One major aim is a non-invasive differentiation of the biopores into earthworm- and root system-originating ones and currently air-, water-, root- and earthwormfilled ones, based on NMR relaxation parameters. Attempts will additionally be made to classify different wall coatings of the biopores with regard to their water affinity. Dynamics of water distribution within the microcosm core and its biopore structures, starting from initial values taken from CeFiT (SP 3), will be documented with an in-plane resolution of 5 mm, in parallel to measurements of root growth dynamics for calculation of biomass and root surface area. Special emphasis will be put on the role of the plant root system for a re-distribution of water/D2O (and solutes) between different soil layers. Finally we will attempt MRT-controlled sample collection from the microcosm cores, to get - together with our research unit partners of SPs 4-8 - repeated access to minimally invasively acquired data on nutrient and microorganism distributions in concert with non-invasively collected water and root distribution data as a basis for dynamic modelling of water and solute circuits in SP 10. Beside the microcosm cores, flat rhizotrons as used in SP 3 will be employed to enable measurements of root and shoot hydrostatic pressure profiles with pressure probes, in addition to MRT measurements. In this way water distributions and corresponding driving forces and growth dynamics will be measured altogether in a minimally invasive manner.

Transport of EINP through soil affected by the dynamics of infiltration flux and particle properties

In this project we experimentally explore the transport of engineered inorganic nanoparticles (EINP) through soils. This is done for original EINPs and some pre-aged form. Transport of NPs in soil is expected to be different from that of reactive solutes, in that hydrodynamic drag, inertial and shear forces as well as the affinity to water-gas interfaces are expected to be more relevant. Hence, the mobility of EINPs in soil is highly sensitive to the morphology of the porous structure and the dynamics of water saturation.This project provides the pore network structure for natural soils using X-ray micro-tomography to allow for an up-scaling of pore-scale interactions explored by project partners to the scale of soil horizons. The pore structure is represented by a network model suitable for pore scale simulations including the dynamics of water-gas interfaces.Pore network simulations will be compared to column experiments for conservative tracers as well as for unaltered and pre-aged EINPs (obtained from INTERFACE). This includes steady state flow scenarios for saturated (ponding) and unsaturated conditions as well as for transient flow to explore the impact of moving water-gas interfaces. The final goal is to arrive at a consistent interpretation of experimental findings and numerical simulations to develop a module for modelling EINP transfer through soil as a function of particle properties, soil structural characteristics and external forcing in terms of flux boundary conditions.

Multiple-site seismic hazard assessment

The classical point wise Cornell-McGuire probabilistic seismic hazard assessment (PSHA), which is widely used for seismic hazard mapping and development of design codes, does not allow direct estimation of multiple-location hazard for distributed structures and facilities: what is the (annual) probability that specific level of ground motion will be exceeded simultaneously in several sites? It is possible to extent the classical methodology to the multiple sites problem considering also ground-motion correlation. We study multiple-location PSHA, as compared with the classical point wise PSHA, using Monte Carlo simulation. Specific items are:(1) Development of the algorithms for multiple-location PSHA;(2) Analysis of the role of the geometry of multiple sites, correlation of ground motion, and evel of seimicity for multiple-location PSHA;(3) Study of correspondence and differences between multiple-location PSHA and classical point wise PSHA and analysis of possibility of utilization of classical PSHA procedures for simplified multiple-location hazard assessment.The project is innovative because only few attempts have been made so far regarding our research questions.

First-principles kinetic modeling for solar hydrogen production

The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

1 2 3 4 520 21 22