API src

Found 231 results.

Related terms

Forschergruppe (FOR) 1320: Crop Sequence and Nutrient Acquisition from the Subsoil, Water as medium for nutrient distribution: Monitoring water distribution between subsoil and topsoil considering roles of biopores and plants, by MRT and pressure probes (WatMed)

Magnetic resonance tomography (MRT) on microcosm soil cores (200 mm Ø) used for CeMiX, comprising naturally stacked subsoil down to 700 mm plus topsoil from CeFiT, will be implemented at a laterally partially open Split 1.5 T magnet, with intended final in-plane spatial resolution of 200 Micro m. Three-dimensional biopore distributions and dynamics of their formation within the cores will be determined non-invasively and compared to complementing CT analyses of SP 2. One major aim is a non-invasive differentiation of the biopores into earthworm- and root system-originating ones and currently air-, water-, root- and earthwormfilled ones, based on NMR relaxation parameters. Attempts will additionally be made to classify different wall coatings of the biopores with regard to their water affinity. Dynamics of water distribution within the microcosm core and its biopore structures, starting from initial values taken from CeFiT (SP 3), will be documented with an in-plane resolution of 5 mm, in parallel to measurements of root growth dynamics for calculation of biomass and root surface area. Special emphasis will be put on the role of the plant root system for a re-distribution of water/D2O (and solutes) between different soil layers. Finally we will attempt MRT-controlled sample collection from the microcosm cores, to get - together with our research unit partners of SPs 4-8 - repeated access to minimally invasively acquired data on nutrient and microorganism distributions in concert with non-invasively collected water and root distribution data as a basis for dynamic modelling of water and solute circuits in SP 10. Beside the microcosm cores, flat rhizotrons as used in SP 3 will be employed to enable measurements of root and shoot hydrostatic pressure profiles with pressure probes, in addition to MRT measurements. In this way water distributions and corresponding driving forces and growth dynamics will be measured altogether in a minimally invasive manner.

Water use characteristics of bamboo (South China)

Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

Beach sand deposits on the coast of southern Norway as a natural experimental setup to test hypotheses on soil development and luminescence dating

Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.

Ökoeffizienz der Entsorgung in Bayern, Deutschland und der Schweiz

Im Auftrag des Bayerischen Landesamtes für Umwelt hat bifa den erstmals 2003 durchgeführten Ökoeffizienzvergleich der Entsorgungsstrukturen Bayerns, Deutschlands und der Schweiz erweitert und aktualisiert. Die Ergebnisse aus dem Jahr 2003 zeigten, dass der bayerische Weg zur Gestaltung der Abfallwirtschaft in seiner Ökoeffizienz im Vergleich mit den Entsorgungsstrukturen der Schweiz und dem deutschen Durchschnitt am besten abschnitt. Nach der, im Rahmen der aktuellen Beauftragung, durchgeführten Datenaktualisierung, der Bilanzierung zusätzlicher Wertstoffströme und der Berücksichtigung des Verbots der Ablagerung nicht vorbehandelter Abfälle rücken die Entsorgungsstrukturen hinsichtlich Ihrer Ökoeffizienz deutlich enger zusammen. Die Entsorgungsstruktur Bayerns weist im Vergleich zur Entsorgungsstruktur Deutschlands zwar noch ein geringfügig besseres ökologisches Gesamtergebnis auf, ist aber gleichzeitig mit leicht höheren Gesamtkosten verbunden. Die Entsorgungsstruktur der Schweiz ist etwas weniger ökoeffizient. Die Ursachen dafür sind eine geringere Umweltentlastung im ökologischen Gesamtergebnis, gepaart mit vergleichsweise hohen Entsorgungskosten. Methoden: Analyse und Moderation sozialer Prozesse, Ökobilanzierung und Systemanalyse, Ökonomie und Managementberatung.

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms

Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.

Natural variation of flowering time due to cis-regulatory evolution of FLOWERING LOCUS T and its orthologs and paralogs in Brassica napus

In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Mineral magnetism of shocked ferrimagnetic minerals

Magnetic properties of ferrimagnetic minerals depend on their crystal lattice, anisotropy, chemical composition and grain size. The latter parameter is strongly controlled by microstructures, which are significant for the interpretation of the magnetic properties of shocked magnetic minerals. Fracturing and lattice defects are the main causes for magnetic domain size reduction and generate an increase in coercivity and the suppression of magnetic transitions (e.g. 34 K transition in pyrrhotite, Verwey transition in magnetite).Especially for an adequate investigation of shock-induced modifications in ferromagnetic minerals, a combination of microstructural and magnetic measurements is therefore essential.This project focusses on two significant aspects of extreme conditions - the consequence of shock waves on natural material on Earth and on the magnetic mineralogy of exotic magnetic minerals in iron meteorites. In order to obtain general correlations between deformation structures and magnetic properties, the specific magnetic properties and carriers as well as microstructures of samples from two impact structures in marine targets (Lockne and Chesapeake Bay) will be compared with shocked magnetite ore and magnetite-bearing target lithologies from outside the crater (Lockne) as well as from undeformed megablocks within the crater (Chesapeake Bay). We will test the hypothesis if shock-related microstructures and associated magnetic properties can significantly be overprinted by postshock hydrothermal alteration. We especially want to focus on the Verwey transition (TV) as lower TVs are described for shocked impact lithologies. Hence, the main focus of this study lies on magneto-mineralogical investigations which combine low- and high-temperature magnetic susceptibility and saturation isothermal remanent magnetization with mineralogical and microstructural investigations. The same methods will then be used for the investigation of iron meteorites, whose magnetic properties are often controled by exotic magnetic minerals like cohenite, schreibersite and daubreelite in addition to the metal phases. Magnetic transition temperatures of those phases are poorly documented in relation to their chemical composition as well as to their crystallographic and microstructural configuration. For a general understanding of shock-related magnetization processes in extraterrestrial and terrestrial material, however, it is crucial to obtain a general correlation between the initial 'unshocked' state and the subsequent shock- and alteration-related overprints.

First-principles kinetic modeling for solar hydrogen production

The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

1 2 3 4 522 23 24