The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.
In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.
Steroid hormones are essential in orchestrating oocyte maturation, i.e. estrogens of follicular origin support the development of the female gamete and fertilization. In this project the concentration of free and conjugated estrogens during follicular development will be analysed and compared to local concentrations in the developing follicle. Cattle are suitable animal models because of the accessibility and suitability for frequent examination and sampling. Furthermore, it has been useful for understanding several features of human reproduction including follicular dynamics, the fate of the emerging follicles is orchestrated mainly by gonadotropins and steroid hormones in a similar manner. Ovarian SULT1E1 participates locally in the regulation of follicular estrogen activity. The ESTcatalysed down-regulation of estrogen activity enables normal ovulation. Conversely, sulfoconjugated estrogens may also be precursors of the production of free estrogens depending on estrogen sulfatase (StS) acitivity. In mammals, follicular luteinisation/ovulation is triggered by a surge in LH and is characterised by numerous physical and biochemical changes, including the decreased production of estradiol (E2). This loss in E2 biosynthetic capacity has been explained by a marked decrease in the expression of key steroidogenic enzymes involved in the follicular production of active estrogens. However, little is known about the regulation of enzymes/proteins responsible for the inactivation and elimination of estrogens, as mediated for example by EST during this period.
Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.
Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.
Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
Im Auftrag des Bayerischen Landesamtes für Umwelt hat bifa den erstmals 2003 durchgeführten Ökoeffizienzvergleich der Entsorgungsstrukturen Bayerns, Deutschlands und der Schweiz erweitert und aktualisiert. Die Ergebnisse aus dem Jahr 2003 zeigten, dass der bayerische Weg zur Gestaltung der Abfallwirtschaft in seiner Ökoeffizienz im Vergleich mit den Entsorgungsstrukturen der Schweiz und dem deutschen Durchschnitt am besten abschnitt. Nach der, im Rahmen der aktuellen Beauftragung, durchgeführten Datenaktualisierung, der Bilanzierung zusätzlicher Wertstoffströme und der Berücksichtigung des Verbots der Ablagerung nicht vorbehandelter Abfälle rücken die Entsorgungsstrukturen hinsichtlich Ihrer Ökoeffizienz deutlich enger zusammen. Die Entsorgungsstruktur Bayerns weist im Vergleich zur Entsorgungsstruktur Deutschlands zwar noch ein geringfügig besseres ökologisches Gesamtergebnis auf, ist aber gleichzeitig mit leicht höheren Gesamtkosten verbunden. Die Entsorgungsstruktur der Schweiz ist etwas weniger ökoeffizient. Die Ursachen dafür sind eine geringere Umweltentlastung im ökologischen Gesamtergebnis, gepaart mit vergleichsweise hohen Entsorgungskosten. Methoden: Analyse und Moderation sozialer Prozesse, Ökobilanzierung und Systemanalyse, Ökonomie und Managementberatung.
Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
In dem Vorhaben wird untersucht, wie wirksam die absorbierte Lichtenergie in Biomasse konvertiert wird. Vergleichend werden Grünalgen und Diatomeen unter verschiedenen Licht- und Nährstoffbedingungen studiert. Auf diese Weise können die metabolischen Kosten unter Nährstoffmangel oder anderen produktivitätsbegrenzenden Bedingungen studiert werden. So wird auch die Säureanpassung ausgewählter Phytoplankter untersucht, um die Biomassebildung in extrem sauren Tagebaurestseen auf physiologischer Ebene zu verstehen. Es konnte gezeigt werden, dass unter Stickstoffmangel die Überführung anorganischen Kohlenstoffs in Biomassebildung durch eine Veränderung der makromolekularen Zusammensetzung der Zellen ähnlicher Effizienz stattfindet, wie unter optimaler Stickstoffversorgung. Dies führt zu einer ökologisch bedeutsamen Teilentkopplung des C und N Kreislaufs im Ökosystem. Ähnliches beobachtet man auch bei der Anpassung von Phytoplanktonalgen an extrem saure Bedingungen wie man sie in sauren Tagebaurestseen vorfindet.
Origin | Count |
---|---|
Bund | 231 |
Type | Count |
---|---|
Förderprogramm | 231 |
License | Count |
---|---|
offen | 231 |
Language | Count |
---|---|
Deutsch | 49 |
Englisch | 225 |
Resource type | Count |
---|---|
Keine | 186 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 205 |
Lebewesen und Lebensräume | 226 |
Luft | 174 |
Mensch und Umwelt | 231 |
Wasser | 179 |
Weitere | 231 |