API src

Found 256 results.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Evolution of geomagnetic dipole moment and South Atlantic Anomaly

The geomagnetic field shields our habitat against solar wind and radiation from space. Due to the geometry of the field, the shielding in general is weakest at high latitudes. It is also anomalously weak in a region around the south Atlantic known as South Atlantic Anomaly (SAA), and the global dipole moment has been decreasing by nearly 10 percent since direct measurements of field intensity became possible in 1832. Due to our limited understanding of the geodynamo processes in Earths core, it is impossible to reliably predict the future evolution of both dipole moment and SAA over the coming decades. However, lack of magnetic field shielding as would be a consequence of further weakening of dipole moment and SAA region field intensity would cause increasing problems for modern technology, in particular satellites, which are vulnerable to radiation damage. A better understanding of the underlying processes is required to estimate the future development of magnetic field characteristics. The study of the past evolution of such characteristics based on historical, archeo- and paleomagnetic data, on time-scales of centuries to millennia, is essential to detect any recurrences and periodicities and provide new insights in dynamo processes in comparison to or in combination with numerical dynamo simulations. We propose to develop two new global spherical harmonic geomagnetic field models, spanning 1 and 10 kyrs, respectively, and designed in particular to study how long the uninterrupted decay of the dipole moment has been going on prior to 1832, and if the SAA is a recurring structure of the field.We will combine for the first time all available historical and archeomagnetic data, both directions and intensities, in a spherical harmonic model spanning the past 1000 years. Existing modelling methods will be adapted accordingly, and existing data bases will be complemented with newly published data. We will further acquire some new archeomagnetic data from the Cape Verde islands from historical times to better constrain the early evolution of the present-day SAA. In order to study the long-term field evolution and possible recurrences of similar weak field structures in this region, we will produce new paleomagnetic records from available marine sediment cores off the coasts of West Africa, Brazil and Chile. This region is weakly constrained in previous millennial scale models. Apart from our main aim to gain better insights into the previous evolution of dipole moment and SAA, the models will be used to study relations between dipole and non-dipole field contributions, hemispheric symmetries and large-scale flux patterns at the core-mantle boundary. These observational findings will provide new insights into geodynamo processes when compared with numerical dynamo simulation results.Moreover, the models can be used to estimate past geomagnetic shielding above Earths surface against solar wind and for nuclide production from galactic cosmic rays.

Ecotoxicology of Organotin compounds

Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.

Diffusion and advection with sorption of anions, cations and non-polar molecules in organo-clays at varying thermo-chemical conditions - validation by analytical methods and molecular simulation

The sorption of anions in geotechnical multibarrier systems of planned high level waste repositories (HLWR) and of non-ionic and organic pollutants in conventional waste disposals are in the center of recent research. In aquatic systems, persistent radionuclides such as 79Se, 99Tc, 129I exist in a form of anions. There is strongly increasing need to find materials with high sorption capacities for such pollutants. Specific requirements on barrier materials are long-term stability of adsorbent under various conditions such as T > 100 C, varying hydrostatic pressure, and the presence of competing ions. Organo-clays are capable to sorb high amounts of cations, anions and non-polar molecules simultaneously having selectivity for certain ions. This project is proposed to improve the understanding of sorption and desorption processes in organo-clays. Additionally, the modification of material properties under varying chemical and thermal conditions will be determined by performing diffusion and advection experiments. Changes by sorption and diffusion will be analyzed by determining surface charge and contact angles. Molecular simulations on models of organo-clays will be conducted in an accord with experiments with aim to understand and analyze experimental results. The computational part of the project will profit from the collaboration of German partner with the group in Vienna, which has a long standing experience in a modeling of clay minerals.

Natural variation of flowering time due to cis-regulatory evolution of FLOWERING LOCUS T and its orthologs and paralogs in Brassica napus

In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.

Forscherguppe (FOR) 1536: INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interface, Aging of engineered inorganic nanoparticles in surface waters

When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.

Nachbewilligung zur Dritten Phase des Projektes: Entwicklung eines zweistufigen biologischen Verfahrens zur Reinigung von Deponiesickerwasser und industriellen Abwässern mit komplexen Stoffgemischen

Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.

The scalar organization of environmental governance: an institutionalist perspective on the transformation of water and marine governance in the European Union

The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).

Release of hexavalent chromium from ore processing residues and the potential of biochar for chromium immobilization in polluted soils

Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.

Beach sand deposits on the coast of southern Norway as a natural experimental setup to test hypotheses on soil development and luminescence dating

Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.

1 2 3 4 524 25 26