Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.
Evidence is compelling for a positive correlation between urbanisation and increment of allergic sensitisation and diseases. The reason for this association is not clear to date. Some data point to a pro-allergic effect of anthropogenic factors on susceptible individuals. Data analysing the impact of environmental - natural and anthropogenic - factors on the allergenicity of allergen carriers such as pollen grains are scarce, and if applicable only taken from in vitro experimental designs. This study will analyse one of the most common allergy inducers in northern Europe - the birch pollen. Under natural exposure conditions, birch pollen will be analysed with respect to their allergenicity. Within an interdisciplinary research team this study will evaluate the effect of natural (e.g. soil, climate, genetic background) and anthropogenic (e.g. traffic pollutants) factors on birch pollen in a holistic approach including analysis of allergen bioavailability, release of pollen associated lipid mediators from birch pollen grains, in vitro immunostimulatory activity and in vivo allergenic potential. These data collected in the time course of three years will significantly add to our understanding how urbanisation and climate change influence the allergenicity of birch pollen and will help us in the future to set up primary prevention studies.
The geomagnetic field shields our habitat against solar wind and radiation from space. Due to the geometry of the field, the shielding in general is weakest at high latitudes. It is also anomalously weak in a region around the south Atlantic known as South Atlantic Anomaly (SAA), and the global dipole moment has been decreasing by nearly 10 percent since direct measurements of field intensity became possible in 1832. Due to our limited understanding of the geodynamo processes in Earths core, it is impossible to reliably predict the future evolution of both dipole moment and SAA over the coming decades. However, lack of magnetic field shielding as would be a consequence of further weakening of dipole moment and SAA region field intensity would cause increasing problems for modern technology, in particular satellites, which are vulnerable to radiation damage. A better understanding of the underlying processes is required to estimate the future development of magnetic field characteristics. The study of the past evolution of such characteristics based on historical, archeo- and paleomagnetic data, on time-scales of centuries to millennia, is essential to detect any recurrences and periodicities and provide new insights in dynamo processes in comparison to or in combination with numerical dynamo simulations. We propose to develop two new global spherical harmonic geomagnetic field models, spanning 1 and 10 kyrs, respectively, and designed in particular to study how long the uninterrupted decay of the dipole moment has been going on prior to 1832, and if the SAA is a recurring structure of the field.We will combine for the first time all available historical and archeomagnetic data, both directions and intensities, in a spherical harmonic model spanning the past 1000 years. Existing modelling methods will be adapted accordingly, and existing data bases will be complemented with newly published data. We will further acquire some new archeomagnetic data from the Cape Verde islands from historical times to better constrain the early evolution of the present-day SAA. In order to study the long-term field evolution and possible recurrences of similar weak field structures in this region, we will produce new paleomagnetic records from available marine sediment cores off the coasts of West Africa, Brazil and Chile. This region is weakly constrained in previous millennial scale models. Apart from our main aim to gain better insights into the previous evolution of dipole moment and SAA, the models will be used to study relations between dipole and non-dipole field contributions, hemispheric symmetries and large-scale flux patterns at the core-mantle boundary. These observational findings will provide new insights into geodynamo processes when compared with numerical dynamo simulation results.Moreover, the models can be used to estimate past geomagnetic shielding above Earths surface against solar wind and for nuclide production from galactic cosmic rays.
Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
In the last decades agricultural policy has gained increasingly in complexity. Nowadays it influences the food and agricultural sector from the global market down to the farm level. Widespread research questions, like the impact of the WTO negotiations on the farm structure, most often require comprehensive modeling frameworks. Thus, different types of models are utilized according to their comparative advantages and combined in a strategically useful way to more accurately represent micro and macro aspects of the food and agricultural sector. Consequently, in recent years we have seen an increase in the development and application of model linkages. Given this background, the overall objective of this subproject is a systematic sensitivity analysis of model linkages that gradually involves more and more characteristics of the linkage and the corresponding transfer of results between models. In addition, the project aims to answer the following specific question: How does structural change at the farm level influence aggregate supply and technical progress? Under which conditions is it possible to derive macro-relationships from micro-relationships? How does the aggregation level influence the model results and how can possible problems be overcome? This procedure is used to quantify the effects and to derive conditions for optimal interaction of the connected models. The analysis is based on the general equilibrium model GTAP (Global Trade Analysis Project) and the farm group model FARMIS (Farm Modelling Information System) which are employed in conjunction to analyze the effects of WTO negotiations on the farm level.
| Origin | Count |
|---|---|
| Bund | 256 |
| Type | Count |
|---|---|
| Förderprogramm | 256 |
| License | Count |
|---|---|
| offen | 256 |
| Language | Count |
|---|---|
| Deutsch | 19 |
| Englisch | 248 |
| Resource type | Count |
|---|---|
| Keine | 205 |
| Webseite | 51 |
| Topic | Count |
|---|---|
| Boden | 234 |
| Lebewesen und Lebensräume | 252 |
| Luft | 195 |
| Mensch und Umwelt | 256 |
| Wasser | 204 |
| Weitere | 256 |