Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modelling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modelling of key organisms in order to extrapolate the gained knowledge to the catchment scale. As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.
It has been suggested that dying and decaying fine roots and root exudation represent important, if not the most important, sources of soil organic carbon (SOC) in forest soils. This may be especially true for deep-reaching roots in the subsoil, but precise data to prove this assumption are lacking. This subproject (1) examines the distribution and abundance of fine roots (greater than 2 mm diameter) and coarse roots (greater than 2 mm) in the subsoil to 240 cm depth of the three subsoil observatories in a mature European beech (Fagus sylvatica) stand, (2) quantifies the turnover of beech fine roots by direct observation (mini-rhizotron approach), (3) measures the decomposition of dead fine root mass in different soil depths, and (4) quantifies root exudation and the N-uptake potential with novel techniques under in situ conditions with the aim (i) to quantify the C flux to the SOC pool upon root death in the subsoil, (ii) to obtain a quantitative estimate of root exudation in the subsoil, and (iii) to assess the uptake activity of fine roots in the subsoil as compared to roots in the topsoil. Key methods applied are (a) the microscopic distinction between live and dead fine root mass, (b) the estimation of fine and coarse root age by the 14C bomb approach and annual ring counting in roots, (c) the direct observation of the formation and disappearance of fine roots in rhizotron tubes by sequential root imaging (CI-600 system, CID) and the calculation of root turnover, (d) the measurement of root litter decomposition using litter bags under field and controlled laboratory conditions, (e) the estimation of root N-uptake capacity by exposing intact fine roots to 15NH4+ and 15NO3- solutions, and (f) the measurement of root exudation by exposing intact fine root branches to trap solutions in cuvettes in the field and analysing for carbohydrates and amino acids by HPLC and Py-FIMS (cooperation with Prof. A. Fischer, University of Trier). The obtained data will be analysed for differences in root abundance and activity between subsoil (100-200 cm) and topsoil (0-20 cm) and will be related to soil chemical and soil biological data collected by the partner projects that may control root turnover and exudation in the subsoil. In a supplementary study, fine root biomass distribution and root turnover will also be studied at the four additional beech sites for examining root-borne C fluxes in the subsoil of beech forests under contrasting soil conditions of different geological substrates (Triassic limestone and sandstone, Quaternary sand and loess deposits).
The sorption of anions in geotechnical multibarrier systems of planned high level waste repositories (HLWR) and of non-ionic and organic pollutants in conventional waste disposals are in the center of recent research. In aquatic systems, persistent radionuclides such as 79Se, 99Tc, 129I exist in a form of anions. There is strongly increasing need to find materials with high sorption capacities for such pollutants. Specific requirements on barrier materials are long-term stability of adsorbent under various conditions such as T > 100 C, varying hydrostatic pressure, and the presence of competing ions. Organo-clays are capable to sorb high amounts of cations, anions and non-polar molecules simultaneously having selectivity for certain ions. This project is proposed to improve the understanding of sorption and desorption processes in organo-clays. Additionally, the modification of material properties under varying chemical and thermal conditions will be determined by performing diffusion and advection experiments. Changes by sorption and diffusion will be analyzed by determining surface charge and contact angles. Molecular simulations on models of organo-clays will be conducted in an accord with experiments with aim to understand and analyze experimental results. The computational part of the project will profit from the collaboration of German partner with the group in Vienna, which has a long standing experience in a modeling of clay minerals.
Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.
The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.
Evidence is compelling for a positive correlation between urbanisation and increment of allergic sensitisation and diseases. The reason for this association is not clear to date. Some data point to a pro-allergic effect of anthropogenic factors on susceptible individuals. Data analysing the impact of environmental - natural and anthropogenic - factors on the allergenicity of allergen carriers such as pollen grains are scarce, and if applicable only taken from in vitro experimental designs. This study will analyse one of the most common allergy inducers in northern Europe - the birch pollen. Under natural exposure conditions, birch pollen will be analysed with respect to their allergenicity. Within an interdisciplinary research team this study will evaluate the effect of natural (e.g. soil, climate, genetic background) and anthropogenic (e.g. traffic pollutants) factors on birch pollen in a holistic approach including analysis of allergen bioavailability, release of pollen associated lipid mediators from birch pollen grains, in vitro immunostimulatory activity and in vivo allergenic potential. These data collected in the time course of three years will significantly add to our understanding how urbanisation and climate change influence the allergenicity of birch pollen and will help us in the future to set up primary prevention studies.
| Origin | Count |
|---|---|
| Bund | 256 |
| Type | Count |
|---|---|
| Förderprogramm | 256 |
| License | Count |
|---|---|
| offen | 256 |
| Language | Count |
|---|---|
| Deutsch | 19 |
| Englisch | 248 |
| Resource type | Count |
|---|---|
| Keine | 205 |
| Webseite | 51 |
| Topic | Count |
|---|---|
| Boden | 233 |
| Lebewesen und Lebensräume | 252 |
| Luft | 195 |
| Mensch und Umwelt | 256 |
| Wasser | 204 |
| Weitere | 256 |