API src

Found 1951 results.

Similar terms

s/vob/VOC/gi

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Chemische Zusammensetzung und zeitliche Veränderung von leicht flüchtigen organischen Verbindungen im Luftaustrag großer Bevölkerungszentren während EMeRGe (Chocolate)

Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?

Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT).

Flüchtige organische Verbindungen (VOC) werden in großen Mengen (1300 TgC pro Jahr) von biogenen und anthropogenen Quellen in die Atmosphäre emittiert. Die Oxidation solcher Verbindungen führt zur Bildung von semivolatilen Produkten, welche in die Partikelphase übergehen können und somit zur Bildung von sekundärem organischem Aerosol (SOA) beitragen. Die globale SOA Produktion anthropogenen Ursprungs beläuft sich auf 0,05 bis 9,7 Tg pro Jahr. Hingegen wird die biogene SOA Produktion mit bis zu 910 Tg pro Jahr beziffert, was einem Umsatz von 70% der emittierten biogenen VOCs entspricht. Ein solcher Umsatz ist unvereinbar mit den vergleichsweise niedrigen SOA Ausbeuten aus Aerosolkammerexperimenten. Die Ursache für diese Diskrepanz liegt vermutlich an zusätzlichen SOA Bildungswegen wie der Weiterreaktion von VOC Oxidationsprodukten, welche von den Umgebungsbedingungen wie dem Oxidationsmittel, der relativen Feuchte und der Art der vorhandenen Partikel abhängt. Somit sind zwar Tag- und Nachtchemie grundverschieden, allerdings auch eng miteinander verbunden, denn die Produkte der Nachtchemie werden durch die darauffolgende Tagchemie weiterprozessiert und umgekehrt. Dadurch wird das Partitionierungsverhalten der Produkte und somit die SOA Bildung stark beeinflusst. Daher soll im Rahmen des Projektes Dark Knight der Einfluss der Tagchemie auf die Nachtchemie und umgekehrt untersucht werden. Das Wissen über die Verschaltung von Tag- und Nachtchemie kann erheblich zum Verständnis über die an der SOA Bildung beteiligte Prozesse beitragen.

Prozessintegrierte Abgasbehandlung bei der Reifenherstellung durch Nutzung von Einsatzströmen als Sorbenzien, Teilvorhaben: Bau einer Pilotanlage, Versuchsdurchführung zur Verfahrensvalidierung und Entwicklung einer intelligenten Absaugung

Reifen sind unverzichtbare Elemente der Mobilität. Wegen den einzigartigen Eigenschaften werden sie ausschließlich auf Basis von Kautschuken hergestellt. Dem organischen Polymer Kautschuk werden im Herstellungsprozess des Reifens noch weitere organische Materialien (wie z.B. Ruße oder Öle) zugemischt. Neben der Zugabe dieser Komponenten entstehen bei der Herstellung von Reifen entlang einer Mischerlinie und der anschließenden Weiterverarbeitung (bspw. Reifenheizpressen) allerdings auch volatile organische Komponenten (VOCs). Da momentan kein Material bekannt ist, welches die Reifen - Kautschuke ersetzen kann, ist es erforderlich, die Emission von VOCs bei der Reifenherstellung weitestgehend zu minimieren. Die Aufgabe des zur Förderung beantragten Vorhabens ist die Entwicklung einer nachhaltigen und Ressourcen schonenden Behandlung der VOC-haltigen Abgase. Die bislang eingesetzten Technologien (insbesondere Regenerative Nachverbrennung, ggf. mit vorheriger Aufkonzentration der Abgase) erfüllen diese Anforderungen nicht. Sie verursachen nicht nur unmittelbare Kohlendioxidemissionen durch Einsatz von fossilen Brennstoffen, sondern erweisen sich in der industriellen Praxis als betrieblich nachteilig bzw. anfällig. Der zur Förderung beantragte Ansatz ist prozessintegriert, nutzt ohnehin im Mischprozess eingesetzte Stoffströme als Adsorbenzien, kommt ohne fossile Brennstoffe aus und vermeidet betriebliche Probleme bisher eingesetzter Technologien. Mit dem Verfahren lassen sich somit bspw. die Kosten für Energie und CO2-Zertifikate deutlich reduzieren.

Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung

Es ist das primäre Ziel dieses Projektes, Prozesse an der Schnittstelle zwischen Boden und Atmosphäre und deren Einfluss auf die ungesättigte Bodenzone zu analysieren, sowie die Theorie derartigen nicht-isothermen, mehrphasen und mehrkomponenten Prozesse zu verbessern. Hierbei liegt der Hauptfokus auf dem Einfluss von Oberflächenrauheiten und Heterogenitäten auf das Austauschverhalten. Das übergeordnete Ziel ist es, neue und validierte physikalische und mathematische Modelle zu entwickeln. Diese Modelle sollen mithilfe von umfassenden experimentellen und numerischen Analysen auf verschiedenen örtlichen und zeitlichen Skalen erstellt werden. Das Projekt hat vier Hauptziele:1. Hochauflösende Laborexperimente sollen auf verschiedenen Skalen (0,25-8m) durchgeführt werden, um neuartige Datenreihen zu erstellen, die aktuell nicht verfügbar sind. Dazu werden Experimente in einem Boden-Atmosphären Windkanal, dem Einzigen seiner Art, durchgeführt in denen die Eigenschaften der freien Strömung, der Bodenoberfläche und des Bodens variiert werden.2. Auf der Intermediate Skala werden Freifeldversuche unter dynamischen Randbedingungen durchgeführt um (i) die theoretischen Beschreibungen unter dem Einfluss von natürliche Heterogenitäten (z.B. Aggregaten) zu testen (ii) den Einfluss von tagesgang-abhängigen Triebkräften (z.B. Windgeschwindigkeit) zu analysieren und (iiI) zu untersuchen wie die Heterogenitäten am besten auf unterschiedlichen Skalen integriert werden können und wie diese die Austauschprozesse beeinflussen.3. Mit Hilfe dieser experimentellen Daten werden detaillierte numerische Simulationen auf der Darcy Skala (wenn notwendig mit der Forchheimer Erweiterung) benutzt, um zu analysieren ob es notwendig ist, die freie Strömung und deren Grenzschichteffekte für Masse, Impuls und Energie in aktuelle Modelle zu integrieren.4. Die Theorie für Massen-, Impuls- und Energieaustauschprozesse zwischen der Atmosphäre und dem Boden soll verbessert werden. Das beinhaltet Verdunstung, Kondensation, Strahlung und Transport von Komponenten, wie flüchtigen Komponenten in der Gasphase (VOC) oder stabilen Wasserisotopen, unter der Berücksichtigung unterschiedlicher Materialgrenzflächen. In einem zweiten Schritt sollen vereinfachte Modelle mit effektiven Parametern, basierend auf der integralen Betrachtung von Strömungs- und Transportprozessen, entwickelt, erweitert und getestet werden. Diese Modelle sollen die Effekte auf den unterschiedlichen zeitlichen und räumlichen Skalen wiedergeben.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Messungen stabiler Isotopenverhältnisse in flüchtigen organischen Verbindungen im Ausfluss von Ballungszentren. Dieser Antrag ist ein Beitrag zu den HALO-Missionen EMeRGe-EU und EMeRGe-ASIA

Die Auswirkungen von flüchtigen organischen Verbindungen (VOC) auf die Luftqualität und damit auf die Gesundheit der Menschen auf lokaler oder regionaler Skala sind direkt offenkundig durch die schädlichen Effekte auf die Lebenswelt. Noch bedeutender ist die kritische Rolle, die VOC in chemischen Prozessen der Atmosphäre einnehmen. Die Bildung vieler sekundärer organischer Schadstoffe in der Atmosphäre wie Ozon, Peroxide, Aldehyde, Peroxyacetylnitrate und sekundäre organische Aerosole hängt entscheidend von der Verfügbarkeit der VOC und ihrer Vorläufersubstanzen ab. Wir planen die Messung von Isotopenverhältnissen und Konzentrationen spezifischer VOC in der Abluft großer Ballungszentren (MPC) in Europa und Asien durch Einsatz des Luftprobensammlers MIRAH auf den HALO-Missionen EMeRGe-EU und EMeRGe-Asia. Die Luftproben werden im Labor mittels Gaschromatographie-Verbrennungs-Isotopen-Massenspektrometrie analysiert. Isotopenverhältnisse in VOC sind wertvolle Indikatoren zur Untersuchung von Reaktionen, die derzeitigen Messverfahren nicht direkt zugänglich sind. Transport- und Mischungsprozesse in der Atmosphäre können damit visualisiert werden, wertvolle Information über dominante Prozesse, an denen VOC beteiligt sind, gewonnen werden. Bereits in den letzten HALO-Missionen, TACTS/ESMVal und den beiden OMO-Missionen, konnten wir zeigen, dass die beantragte Messmethode ein sensitives Werkzeug ist, z.B. für Quellstudien von VOC, zur Ableitung von Transportwegen und deren Einfluss auf die Verteilung der VOC, zur Abschätzung des Mischungsgrads, der Unterscheidung zwischen dynamischen und chemischen Prozessen, als auch zur Untersuchung atmosphärischer Umwandlung und Verweilzeit spezifischer VOC. Die Wertstellung dieser Ergebnisse wird sogar noch gesteigert durch den Vergleich mit Ergebnissen aus 3-dimensionalen Chemie-Transport-Modellen. Die folgenden geplanten wissenschaftlichen Zielsetzungen betten sich in die übergreifenden Ziele von EMeRGe-EU and EMeRGe-ASIA: (1) Messung der Zusammensetzung der in Europa und Asien entspringenden Schadstofffahnen und Bestimmung des Beitrags bestimmter VOC an der Zusammensetzung der Atmosphäre; (2) Bestimmung der weitreichenden Luftverschmutzung sowie deren Einfluss auf die Verteilung bestimmter VOC; (3) Identifizierung möglicher Unterschiede im Transport und der Umwandlung von VOC, die mit besonderen einzigartigen Charakteristiken europäischer und asiatischer MPCs verbunden sind; (4) Identifizierung von Oxidations- und Zwischenprodukten des VOC-Abbaus; (5) Informationsgewinnung über Oxidationswege durch Messung von Vorläufer- und Oxidationsprodukten; (6) Altersbestimmung von Luftmassen in unterschiedlichen Stadien der Schadstofffahnen; (7) Gegenüberstellung photochemischer Prozessierung gegen Transport und Mischung; (8) Verbindung der Informationen aus Isotopenverhältnissen mit bestimmten regionalen meteorologischen Daten; (9) Bereitstellung der Messdaten für Chemietransportmodelle.

ACTRIS-D National Facilities, Phase 1, Teilprojekt 9 (GUF-NF): Ausbau des Taunusobservatoriums (TO) am Kleinen Feldberg im Hinblick auf umfassende in-situ-Messungen von Aerosolen und kurzlebigen Spurengasen im Rahmen von ACTRIS

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt A04: Prozessbasierte Analyse von Ökosystem-Atmosphäre-Austauschs von CO2, H2O und flüchtigen organischen Verbindungen (VOC)

A4.1 Ökosystemreaktionen und Rückkopplungen im Ökosystem-Atmosphäre-Austausch von CO2, H2O und VOCs in einem heterogenen Waldökosystem Um die Lücke zwischen der relativ kleinen Skala eines einzelnen Baumes und einem Waldbestand zu schließen, analysiert A4.1 den Austausch zwischen Ökosystem und Atmosphäre durch Eddy-Kovarianz Messungen von H2O, CO2 und dessen Isoflux (13CO2). Somit lassen sich die Flüsse auf einer integrierten Skala in ihre Komponenten (Ökosystematmung und Bruttoprimärproduktion) auftrennen. Darüber hinaus messen wir die Aufnahme und Freisetzung von VOC durch unsere Wälder und bringen sie mit wichtigen Ökosystemfunktionen in Verbindung, die stark auf Umweltveränderungen reagieren. A4.2 Entwicklung eines auf einem Interbandkaskadenlaser basierenden Messsystems zur Untersuchung des Austauschs zwischen Ökosystem und Atmosphäre von VOCs. Hier entwickeln wir erstmals eine optische spektroskopische Sensortechnologie, um VOCs mit Hilfe der durchstimmbaren Laserabsorptionsspektroskopie (TLAS) zu messen. Dies soll entlang der Konzentrationsgradienten am Messturm und in Verbindung mit Einzelblattküvetten (A3.2) erfolgen.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt A03: Blattküvetten-Laserspektrometer-System zur Analyse der Photosynthese, ihrer 13C-Isotopen-diskriminierung, und Emissionen flüchtiger organischer Verbindungen (VOC)

A3.1 Räumliche und zeitliche Auflösung der 13CO2- und VOC-Flüsse im BlattWir erfassen die räumliche und zeitliche Dynamik des Gaswechsels in Blättern innerhalb Baumkronen und Baumarten in einem Mischbestand. Durch die Messung der natürliche 13C-Isotopen Diskrimination können Anpassungen der Wassernutzungseffizienz und Umwelteinflüsse auf die Photosynthese entschlüsselt werden. Blattemissionen flüchtiger organischer Verbindungen (VOC) sind weitere Indikatoren für biotische und abiotische Stresse, so dass Hot Spots und Hot Moments in Echtzeit erfasst werden können. A3.2 Entwicklung von miniaturisierten Blattküvetten und kompakten Laser-spektroskopen für 13CO2-IsotopeWir entwickeln Mikro-Gasküvetten, welche in großer Zahl eingesetzt werden sollen, um die 3D-Variabilität der 13CO2-Isotope innerhalb des Kronendachs zu überwachen. Sie sind mit einem integrierten Öffnungs- und Schließ-mechanismus ausgestattet und werden mit mehreren kleinen, kostengünstigen Kohlenstoffisotopen-Laserspektroskopen verbunden, die auch die H2O-Flüsse in den Blättern messen werden. Da die Laserspektroskope nicht in ähnlichem Maße miniaturisiert werden können wie die Blattküvetten, werden sie an einer zentralen Stelle platziert und durch Schläuche verbunden.

Bestimmung der Aufnahmeraten von VVOCs und Carbonylen aus Raumluft in Passivprobenahmesystemen

Leicht flüchtige organische Verbindungen (VVOC - very volatile organic compounds), die aus Bauprodukten, Möbeln und Konsumprodukten ausgasen, sind in den letzten Jahren zunehmend in Fokus der gesundheitliche Bewertung von Innenraumluft. In Zukunft ist geplant, entsprechende Passivsammler des UBA in großem Umfang insbesondere im Rahmen der Deutsche Umweltstudie zur Gesundheit (GerES) in deutschen Wohnungen zur Gewinnung repräsentativer Daten einzusetzen. Für die Ableitung von Raumluftkonzentrationen der VVOCs aus Passivsammlern ist eine Aufnahmerate erforderlich, welche für jede Verbindung aus dem Spektrum der VVOCs einen substanzspezifischen Wert hat. Dieses Projekt soll die entsprechenden Aufnahmeraten erarbeiten.

Badestellen an Badegewässern des Landes Brandenburg - Anwendung

Die Badestellenkarte enthält aktuelle Angaben zur Badegewässerqualität für 2024 und zu ihrer Einstufung an den ausgewiesenen Badestellen an Badegewässern des Landes Brandenburg. Während der Badesaison vom 15. Mai bis 15. September eines jeden Jahres werden die Daten und Informationen täglich aktualisiert. Neben den Angaben zu gesundheitlich relevanten mikrobiologischen Parametern und aktuellen Überwachungsergebnissen der Wasserproben wird auch über die aktuelle Sichttiefe, über mögliche Algenmassenentwicklungen oder Blaualgenbelastungen mit Warnhinweisen sowie über die Beschaffenheit und Ausstattung der Badestelle wie z.B. Einrichtungen der Deutschen Lebens-Rettungs-Gesellschaft (DLRG), Gastronomie, sanitäre Einrichtungen und Abfallentsorgung informiert. Jede Badestelle ist mit einem Foto abgebildet. Die Badestellen und deren Umgebung können bis zu einer Auflösung der Topographischen Landkarte im Maßstab von 1:10.000 dargestellt und ausgedruckt werden.

1 2 3 4 5194 195 196