Das Projekt "The European aeroemissions network (AERONET)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik durchgeführt. One of the major problems that civil aeronautics will have to face over the next twenty or thirty years is to accommodate the predicted growth in demand of air transport without creating unacceptable adverse environmental effects. It is to be expected that new scientific results, increasing public concerns over the environment and future restrictive regulations with respect to aircraft emissions will force airline companies to take ecological considerations much more into account than it does at present. Consequently, for European aircraft manufacturers it is of high importance to react early and to guide their research and development resources into the most important and efficient direction. The aim of the AERONET project is to support coordination ' a postiori' of existing European and national projects or programmes dealing with the contribution of air traffic emissions to anthropogenic climate and atmospheric changes. For this purpose AERONET seeks to : - bring together experts from engine technology, atmospheric research and operations as well as programme responsible to exchange knowledge and opinions and to discuss necessary future actions on the basis of jointly defined goals and time scales, - produce competitive advantage for Europe through enhanced information echoing in the field of atmospheric effects of air traffic emissions, - strengthen a common European position in global technical and political discussions - support the Commission in identifying topics for the 5th Framework Programme, - identify gaps and help prepare a coordinated submission of proposals. European Dimension and Partnership: Europe is, beside the US, one of the two biggest aircraft manufacturers. One supposition for the economic success of European aircraft industry is not only to fulfill the existing regulations but, due to the long development times of 5-10 years and the long lifetimes of aircraft of more than 20 years, also to take the trend of future regulations development into account at a very early stage. This needs continuous and fast information exchange and discussions between atmospheric scientists, aircraft engineers and regulatory organisations. To be successful with an effort of this dimension, optimal coordination of national and European programmes in all three fields is required. Thus the network brings together representatives of all programmes and institutions concerned, helps to integrate activities through better information exchange, tries to identify the most urgent themes for R&D activities and intends to give recommendations for the Fifth Framework Programme. Potential Applications: Understanding the atmospheric impacts, the technical consequences and development perspectives, and the operational impacts as a whole is absolutely necessary to strengthen the European position in global regulatory committees on the on side and to gain competitive advantages for the European aircraft and airline industries on the other side. usw
Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.
Das Projekt "C3: Market inclusion of ecosystem services: A viable option to achieve sustainable land use in the tropics?" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Waldinventur und nachhaltige Nutzung durchgeführt. The concept of ecosystem services (ES) links ecosystem functioning and human wel-fare to achieve sustainable land use. However, the success of this concept will critically depend on sources to finance the provision of ES (possibly mobilized by means of markets for ES), on credibility of ES values and on willingness of ES providers to ac-cept financial compensation. Our proposal addresses these aspects: The first part investigates how the land use in Ecuador would change if ES were actually acknowl-edged as economic values. We will use and develop a risk sensitive economic modeling approach to integrate the uncertainty of expected economic values for ES. The aim is to explore how the uncertainty of ES values would affect investments into specific ecosystem types and the connected conversion processes from tropical forest lands to other land use types and vice versa. The second proposal part investigates the willing-ness to accept financial compensation for providing ES. In this part we adapt a risk-sensitive bioeconomic farm model that combines various productive but sustainable land management options to real farm situations. The farm level modeling builds upon the effects of risk compensation from diversified land use by means of a land use port-folio approach. It will be used to derive acceptable individual and thus effective conser-vation payments.
Das Projekt "Storage of hydrogen in hydrides" wird vom Umweltbundesamt gefördert und von Weierstraß-Institut für Angewandte Analysis und Stochastik durchgeführt. Hydrogen is the ideal synthetic fuel to convert chemical energy into electrical energy or into motive power because it is light weight, highly abundant and its oxidation product is vapor of water. Thus its usage helps to reduce the greenhouse gases and it conserves fossile resources. There is even a clean way to produce hydrogen by electrolysis of water by means of photo voltaics (SvW06, VSM05, PMM05). There are various possibilities to store the hydrogen for later use: Liquid and gaseous hydrogen can be stored in a pressure vessel, hydrogen can be adsorped on large surface areas of solids, and finally crystal lattices of metals or other compounds can be used as the storage system, where hydrogen is dissolved either on interstitial or on regular lattice sites by substitution (SvW06, San99). The latter process and its reversal is called hydriding respectively dehydriding. The subject of this proposal is the modeling and simulation of that process. The main problem of a rechargeable lithium-ion battery is likewise a storage problem, because in a rechargeable battery, both the anode and cathode do not directly take part in the electrochemical process that converts chemical energy into electrical energy, rather they act as host systems for the electron spending element, which is here lithium (Li). During the last month the applicant developed and exploited a mathematical model that is capable to capture the storage problem of an iron phosphate (FePO4) cathode, where the Li atoms are stored on interstitial lattice sites (DGJ07).
Das Projekt "Climate indicators on the local scale for past, present and future and platform data management" wird vom Umweltbundesamt gefördert und von Philipps-Universität Marburg, Fachgebiet Klimageographie und Umweltmodellierung durchgeführt. Predicting future climate change is in itself already difficult, especially in such complex ecosystems as the Andean mountain rain and dry forest as well as the Paramo. The common tools to simulate global climate change are global circulation models (GCM). Because of their coarse resolution they are not able to capture atmospheric processes affecting the local climate. For this reason a dynamical downscaling approach will be used to develop a highly resolved spatial and temporal Climatic Indicator System (hrCIS) to derive ecologically relevant climate change indicators affecting the ecosystems of South Ecuador. A local-limited area model (LAM) will be used to (i) generate a highly resolved gridded climatology for present day (hrCISpr) based on reanalysis data and (ii) to generate a highly resolved gridded climatology for projected future (hrCISpf) based on the new Representative Concentration Pathways (RCP) scenario data. The output of the LAM for present day will be validated with in-situ measurement data and satellite-derived products to ensure the accuracy of the model for the simulations of the projected future. On the basis of statistical analysis of both climatologies changes in climate indicators such as air temperature and precipitation regime will be described. The proper storage, curation and accessibility of environmental data is of crucial importance for global change research particularly for monitoring purposes. This proposal will offer an adequate data management system for the Platform for Biodiversity and Ecosystem Monitoring and Research. This will be archived by extending the web-based information management system FOR816DW (a data warehouse for collaborative ecological research units) with features like automatic upload interfaces, a workbench for integrative analysis and an user defined alert system, which will facilitate environmental monitoring for scientist as well as stakeholders. Beside the development of these innovations a main objective is the transfer of knowledge and information (know how, source code, and collection data) to our partners in Ecuador. For this, and to bring together the existing data sources, we cooperate with university and non-university parties in the joint establishment of a Data access platform for environmental data of the region. This will include considerations on long-term accessibility, which is envisaged by a data transfer to the planned German national data infrastructure GFBio.
Das Projekt "Technical Support for the revision of ecolabel and green public procurement GPP Criteria Lot 1" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. The project's objective is to support JRC IPTS in revising the existing Ecolabel and GPP criteria of personal computers and notebook computers. The priority in this revision process is to first analyse which of the existing criteria and the supporting evidence are still valid and to identify the additional research that should be carried out. Potential additional criteria can be developed, if identified as necessary in the course of the study. The study starts with a definition of the scope; the necessarity for new or revised Ecolabel and GPP criteria is based on a market analysis and a technical analysis with research on the most significant environmental impacts during the whole life cycle of the products. This also includes the application of a consistent methodological approach regarding the hazardous substances criteria. Based on these findings, the improvement potential will be derived resulting in a proposal for a revised Ecolabel and GPP criteria set for desktop and notebook computers which will be discussed in a European stakeholder process.
Das Projekt "(Vorschlag für ein 'Berliner Protokoll' zur Rahmenkonvention zum Klimaschutz)" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt.
Das Projekt "Technical Support for the revision of ecolabel and green public procurement GPP Criteria Lot 4" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. The project's objective is to support JRC IPTS in revising the existing Ecolabel and GPP criteria of televisions. The priority in this revision process is to first analyse which of the existing criteria and the supporting evidence are still valid and to identify the additional research that should be carried out. Potential additional criteria can be developed, if identified as necessary in the course of the study. The study starts with a definition of the scope; the necessarity for new or revised Ecolabel and GPP criteria is based on a market analysis and a technical analysis with research on the most significant environmental impacts during the whole life cycle of the products. This also includes the application of a consistent methodological approach regarding the hazardous substances criteria. Based on these findings, the improvement potential will be derived resulting in a proposal for a revised Ecolabel and GPP criteria set for televisions which will be discussed in a European stakeholder process.
Das Projekt "SOCIOEC - Socio economic effects of management measures of the future CFP" wird vom Umweltbundesamt gefördert und von Universität zu Kiel, Institut für Volkswirtschaftslehre, Lehrstuhl für Umwelt-, Ressourcen- und Ökologische Ökonomik durchgeführt. SOCIOEC is an interdisciplinary, European wide project bringing together scientists from several fisheries sciences with industry partners and other key stakeholders to work in an integrated manner on solutions for future fisheries management, that can be implemented at a regional level. The central concept is to provide a mechanism for developing measures that are consistent with the overarching sustainability objectives of the EU, and that can provide consensus across all stakeholders. The first step will be to develop a coherent and consistent set of management objectives, which will address ecological; economic and social sustainability targets. The objectives should be consistent with the aims of the CFP, MSFD and other EU directives, but they should also be understandable by the wider stakeholder community and engage their support. This will then lead to the proposal of a number of potential management measures, based on existing or new approaches. The second step will be to analyze the incentives for compliance provided by these measures. In particular, we will examine fisher's responses and perceptions of these measures, based on historical analysis as well as direct consultation and interviews. This project part will also examine how the governance can be changed to facilitate self- and co-management to ensure fisher buy-in to promising management measures. In particular, the project will focus on the interpretation of overarching (i.e. EU) objectives in local and regional contexts. Finally, the project will examine the impacts of the management measures that emerge from this process, particularly in terms of their economic and social impacts. The IA analysis will be integrated by evaluating the proposed measures against the criteria of effectiveness, efficiency and coherence. Special attention will be paid in evaluating the proposed management measures' performance in terms of their ability to achieve the general and specific ecological objectives.
Das Projekt "Strategies and Tools to Assess and Implement noise Reducing measures for Railway Systems (STAIRRS)" wird vom Umweltbundesamt gefördert und von Deutsche Bahn AG, Bahn-Umwelt-Zentrum (VU) durchgeführt. Objective: STAIRRS proposal is a response to Task 2.2.2/5 in the 5th Framework Programme fi Sustainable Mobility and Intermodality: Competitive and Sustainable Growth fl It contains three work Packages: WP1 Development of a tool for a common European scale cost benefit study of different options for implementing low noise solutions, leading to industrial development and implementation of optimal solutions on a local, national and international level. WP2 Refinement of assessment of noise from railway systems, using advanced procedures to prevent the need to duplicate measurements for interoperable vehicles, and thus reduce testing costs. by providing values applicable to various countries, by a single operation. Such methods will also allow separation of vehicle and track contributions to rolling noise. WP3 action to strategy makers using results from WP1 and WP2. Prime Contractor: Stichting European Rail Research Institute; Utrecht; Nederland.
Origin | Count |
---|---|
Bund | 99 |
Type | Count |
---|---|
Förderprogramm | 99 |
License | Count |
---|---|
offen | 99 |
Language | Count |
---|---|
Deutsch | 99 |
Englisch | 96 |
Resource type | Count |
---|---|
Keine | 83 |
Webseite | 16 |
Topic | Count |
---|---|
Boden | 82 |
Lebewesen & Lebensräume | 96 |
Luft | 67 |
Mensch & Umwelt | 99 |
Wasser | 73 |
Weitere | 99 |