API src

Found 6701 results.

Related terms

Pan-Arctic Visualization of Landscape Change (2005-2024), Arctic PASSION Permafrost Service

This raster dataset, in Cloud Optimized GeoTIFF format (COG), provides information on land surface changes at the pan-arctic scale. Multispectral Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI, and Landsat-9 OLI-2 imagery (cloud-cover less than 70%, months July and August) was used for detecting disturbance trends (associated with abrupt permafrost degradation) between 2005 and 2024. For each satellite image, we calculated the Tasseled Cap multi-spectral index to translate the spectral reflectance signal to the semantic information Brightness, Greenness, and Wetness. In order to characterize change information, we calculated the linear trend of Brightness, Greenness, and Wetness over two decades at the individual pixel level, based on annually aggregated data. The final map product therefore contains information on the direction and magnitude of change for all three Tasseled Cap parameters at 30 m spatial resolution across the pan-arctic permafrost domain. Features detected include coastal erosion, lake drainage, infrastructure expansion, and fires. The general processing methodology was developed by Fraser et al. (2014) and adapted and expanded by Nitze et al. (2016, 2018). Here, we upscaled the processing to the circum-arctic permafrost region and applied it to the recent 20-year period from 2005 through 2024. The service covers the permafrost region up to 81° North: Alaska (USA), Canada, Greenland, Iceland, Norway, Sweden, Finland, Russia, Mongolia, and China. For Russia and China, regions not containing permafrost were excluded. The data have been processed in Google Earth Engine as part of the research projects ERC PETA-CARB, ESA CCI+ Permafrost, NSF Permafrost Discovery Gateway, and EU Arctic PASSION. The dataset is a contribution to the 'Pan-Arctic Requirements-Driven Permafrost Service' of the Arctic PASSION project (see References). Changes in the Tasseled Cap indices – Brightness, Greenness, and Wetness – are displayed in the image bands red, green, and blue, respectively. Here, coastal erosion (a trend of a land surface transitioning to a water surface) is depicted in dark blue tones, while coastal accretion (a trend of a water surface transitioning to a land surface) is depicted in bright orange colors. Drained lakes are shown in bright yellow or orange colors, depending on the soil conditions and vegetation regrowth. Fire scars are a further common feature, appearing in different colors depending on the time of the fire and the pre-fire land cover. The data can be explored via the Arctic Landscape EXplorer (ALEX; see References) and are available as a public web map service (WMS; see References), both hosted by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

Ozon Lauenburg, Murjahnstraße 1-Stunden Mittelwert 2025

Um die Gesundheit der Menschen und die Vegetation vor den Einflüssen zu hoher Luftschadstoffbelastungen zu schützen, wird die Luftqualität laufend untersucht und nach gesetzlichen Vorschriften beurteilt. Dafür betreibt das Landesamt für Umwelt (LfU) in Schleswig-Holstein ein Netz aus Messstationen, an denen mit unterschiedlichen Methoden Luftschadstoffe gemessen werden. Die Messdaten aus Schleswig-Holstein und viele zusätzliche Informationen zu den Messungen werden an das Umweltbundesamt weiter geleitet und von dort gemeinsam mit den Daten aller Bundesländer an die Europäische Kommission gemeldet. Alle aktuell veröffentlichten Daten sind als ***vorläufig*** einzustufen, da sie zu Ihrer schnellen Information zunächst automatisch auf Gültigkeit geprüft werden. Vor der abschließenden Bewertung und Beurteilung der Luftqualität findet später eine mehrstufige Prüfung nach gesetzlichen Vorgaben statt. Bei den CSV-Dateien „fehlt“ am Tag der Umstellung von Normalzeit (MEZ) auf Sommerzeit (MESZ) die 3-Uhr-Messung, am Tag der Umstellung von Sommer- auf Normalzeit gibt es hingegen zwei 3-Uhr-Messungen. Die JSON-Dateien sind von dieser Problematik nicht betroffen, hier wird durchgängig Normalzeit verwendet. [Informationen zur Messstation](https://www.schleswig-holstein.de/DE/Fachinhalte/L/luftqualitaet/Messstationen/Lauenburg_Murjahnstr.html)

Feinstaub (PM10) Flensburg 1-Stunden Mittelwert 2025

Um die Gesundheit der Menschen und die Vegetation vor den Einflüssen zu hoher Luftschadstoffbelastungen zu schützen, wird die Luftqualität laufend untersucht und nach gesetzlichen Vorschriften beurteilt. Dafür betreibt das Landesamt für Umwelt (LfU) in Schleswig-Holstein ein Netz aus Messstationen, an denen mit unterschiedlichen Methoden Luftschadstoffe gemessen werden. Die Messdaten aus Schleswig-Holstein und viele zusätzliche Informationen zu den Messungen werden an das Umweltbundesamt weiter geleitet und von dort gemeinsam mit den Daten aller Bundesländer an die Europäische Kommission gemeldet. Alle aktuell veröffentlichten Daten sind als ***vorläufig*** einzustufen, da sie zu Ihrer schnellen Information zunächst automatisch auf Gültigkeit geprüft werden. Vor der abschließenden Bewertung und Beurteilung der Luftqualität findet später eine mehrstufige Prüfung nach gesetzlichen Vorgaben statt. Bei den CSV-Dateien „fehlt“ am Tag der Umstellung von Normalzeit (MEZ) auf Sommerzeit (MESZ) die 3-Uhr-Messung, am Tag der Umstellung von Sommer- auf Normalzeit gibt es hingegen zwei 3-Uhr-Messungen. Die JSON-Dateien sind von dieser Problematik nicht betroffen, hier wird durchgängig Normalzeit verwendet. [Informationen zur Messstation](https://www.schleswig-holstein.de/DE/Fachinhalte/L/luftqualitaet/Messstationen/Flensburg.html)

INSPIRE Soil / Minimale Nitrataustragsgefährdung - Landesmethode BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die minimale Nitrataustragsgefährdung (Berechnung nach Landesmethode) Brandenburg, zugeordnet in das INSPIRE-Zielschema Boden. Damit wird das minimale Risiko einer Nitratauswaschung aus dem Wurzelraum der Vegetation durch versickerndes Bodenwasser bewertet. Weiterführende Informationen finden Sie hier: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the minimum risk of nitrate leaching (calculation according to state method) in the State of Brandenburg from the LBGR, assigned to the INSPIRE annex schema Soil. This evaluates the minimum risk of nitrate leaching from the root zone of the vegetation due to seeping ground water. Further information can be found here: https://geo.brandenburg.de/karten/htdocs/21042020_Sickerwasserrate.pdf. The data set is provided via compliant view and download services.

Karten Fachbeitag Landschaftsrahmenplan (Region Plauen)

Naturräumliche Gliederung (1:280.000) Flächennutzung (1:280.000) Potenzielle Natürliche Vegetation (1:280.000) Gebiete mit besonderer avifaunistischer Bedeutung (1:280.000) Gebiete mit besonderer Bedeutung für den Fledermausschutz (1:280.000) Biotoppotenzial (1:280.000) Natürliche Bodenfunktionen (1:280.000) Archivfunktion (1:280.000) Erosionsgefährdung (1:280.000) Stoffliche Belastungen (1:280.000) Rohstoffpotenzial (1:280.000) Fließgewässernetz und Einzugsgebiete (1:280.000) Zustandsbewertung Fischfauna und Querbauwerke (1:280.000) Beurteilung der Zielerreichung von Oberflächenwasserkörpern (1:280.000) Trinkwasser- und Heilwasserschutzgebiete (1:280.000) Beurteilung der Zielerreichung von Grundwasserkörpern (1:280.000) Grundwasserabhängige Biotope und Ökosysteme (1:280.000) Mittlere jährliche Windgeschwindigkeit (1:280.000) Erholungseignung (1:280.000) Bodennahe Durchlüftungsverhältnisse (1:280.000) Freiflächensicherungsbedarf (1:280.000) Waldflächenentwicklung (1:280.000) Ausgewählte kulturlandschaftlich bedeutsame Bereiche und Elemente (1:280.000) Bereiche mit besonderer Sichtexposition (1:280.000) Landschaftliche Erlebniswirksamkeit (1:280.000) Unzerschnittene Räume (1:280.000) Landschaftsbereiche mit besonderen Nutzungsanforderungen (1:200.000) Sanierungsbedürftige Bereiche der Landschaft (1:200.000) Freiraumsicherung (1:100.000) Regionale Grünzüge - Begründung (1:200.000) Schutzgebiete nach Naturschutzrecht (1:100.000) Ökologischer Verbund und regionale Maßnahmenschwerpunkte (1:200.000)

Großräumige Analyse von Verbuschungsflächen mit NOAA-AVHRR-Daten in Namibia

Seit 1979 erfassen Satelliten der NOAA-Serie die Erde und liefern damit eine der längsten kontinuierlichen Bild-Datenreihen von Satelliten überhaupt. Durch ihre großflächige Abdeckung, ihre hohe zeitliche Auflösung und ihren kostengünstigen Empfang eignen sich diese Daten hervorragend zum Monitoring. Bislang werden diese langen Zeitreihen noch kaum herangezogen, um langfristige Veränderungen von Oberflächenphänomenen zu beschreiben, denn der Großteil der Fernerkundungsarbeiten beschäftigt sich mit neueren Sensoren und deren Anwendungen. Gerade vor dem Hintergrund der Landdegradierung durch unangepaßte Landnutzung in den Trockenräumen der Erde sollten die vorhandenen archivierten Datenreihen zur Langzeitanalyse aber genutzt werden und die Ergebnisse in Konzepte des Landmanagements einfließen. In Namibia vollzieht sich in den Nationalparks und dem Weideland die Landdegradierung durch eine massive Verbuschung, v.a. mit Acacia mellifera. Die Verbuschungsdynamik der letzten 20 Jahre soll in Etosha mit NOA-AVHRR-Daten erfasst werden. Die Ergebnisse aus dem Etosha-Nationalpark können dann zum Monitoring der Verbuschung in Namibia von örtlichen Institutionen eingesetzt werden. So ist die Inwertsetzung der Daten gewährleistet und durch die Weiterentwicklung der NOAA-Serie durch das MODIS-System auch für die Zukunft gewährleistet.

Untersuchung der Eignung aus Inertmaterial aufgebauter Deponieoberflächenabdichtungssysteme am Beispiel einer Hausmülldeponie in Sachsen

Die zum 1. August 2002 inkraftgetretene Deponieverordnung des Bundes (DepV) fordert ab 31.05.2002, in Ausnahmefällen ab 31.05.2009, die Beendigung der bisher üblichen Siedlungsabfalldeponierung. Auf den zahlreichen, daraufhin zu schließenden Siedlungsabfalldeponien sind dann entsprechende Oberflächenabdichtungssysteme aufzubringen. Für Hausmülldeponien sieht die Deponieverordnung ein Regel-Oberflächenabdichtungssystem vor (vgl. Anhang 1 Nr. 2 DK II DepV), dass unter Experten als vielfach nicht zielführend angesehen wird. Kritisiert wird unter anderem die Haltbarkeit der Kunststoffdichtungsbahn, die für den Bewuchs nicht ausreichende Mächtigkeit der Rekultivierungsschicht und die Austrocknungs- und Rissbildungsgefahr in der unter der Kunststoffdichtungsbahn gelegenen mineralischen Ton-Dichtungsschicht. Eine Entlassung aus der Nachsorgeverantwortung für die Oberflächenabdichtung einer Deponie wird nur dann realistisch sein, wenn diesen Problemaspekten ausreichend Rechnung getragen worden ist. Um dies zu erreichen, ist es erforderlich, deponiespezifisch besser geeignete Oberflächenabdichtungssysteme zu entwickeln. Vor diesem Hintergrund sollen Dichtungssysteme untersucht werden, die vollständig aus vor Ort verfügbarem Boden- oder anderem Inertmaterial aufgebaut sind. Derartige Systeme bieten folgende Vorteile: 1) anders als Kunststoffdichtungsbahnen ist Boden- und Inertmaterial und somit die gesamte Konstruktion des Dichtungssystems praktisch unbegrenzt haltbar; 2) der gesamte Dichtungsquerschnitt steht dem Bewuchs für eine tiefe Wurzelverankerung sowie hohe Wasserspeicherung und -nachlieferung zur Verfügung; 3) die Schichten des Dichtungssystems und der Bewuchs können an die jeweiligen meteorologischen Verhältnisse so angepasst werden, dass das Dichtungssystem genügend feucht bleibt, damit es dauerhaft plastisch und somit setzungstolerant ist; 4) eindringendes Niederschlagswasser kann durch Speicherung und bewuchsabhängige Evapotranspiration dauerhaft zurückgehalten werden, so dass es nicht in den Deponiekörper eindringen kann; 5) eventuell noch an die Deponieoberfläche drängende Deponiegase können flächig verteilt eine ausreichende belebt-durchwurzelte Bodenschicht passieren, so dass das im Deponiegas enthaltene Methan oxidiert werden kann.

Loess in Armenia

This project aims to characterize, map, analyze and date recently discovered loess-palaeosol sequences from NE Armenia. These sequences have proved to be especially rewarding because of their thickness (up to 45 m) and the presence of diagnostic tephra layers. The project seeks to derive a standard profile for NE Armenia and thus for the Lesser Caucasus. We will use luminescence technologies to date the loess sections, environmental magnetism to understand soil development, mineralogy to constrain provenance and weathering-potential, and terrestrial Mollusca and biomarkers to evaluate different vegetation formations.

Variabilität des Ostasiatischen Monsuns während der letzten 65.000 Jahre - laminierte Seesedimente aus dem Sihailongwan-Maarsee, NE-China

Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.

Forschergruppe (FOR) 5639: Land-Atmosphäre Feedback Initiative, Teilprojekt: Skalenabhängiger Einfluss der dynamischen Vegetationsheterogenität auf Wärme- und Feuchteflüsse in der "Blending Height

Atmosphärische Modelle verwenden eine Schnittstelle zwischen dem Landoberflächenmodell und der Parametrisierung der Flüsse in der atmosphärischen Grenzschicht (ABL). Über eine Parameterisierung der Prandtlschicht (engl. surface layer scheme) werden Impuls-, Wärme- und Feuchtigkeitsflüsse zwischen der Oberfläche und der untersten atmosphärischen Modellschicht ausgetauscht. Bei diesem Ansatz wird eine „Blending Height“ eingeführt, bei der die Oberflächenflüsse über einer heterogenen Landoberfläche als homogen auf der Gitterskala betrachtet werden. In dieser Höhe, die innerhalb der untersten atmosphärischen Modellschicht angenommen wird, findet der Übergang zur ABL-Parametrisierung statt. Bei konvektionserlaubenden (CP) Modellsimulationen (Gitterskala < 3 km) über heterogener Vegetation können die unteren Modellschichten jedoch unterhalb der „Blending Height“ liegen, was zu Fehlern in den simulierten Flüssen führt. Eine große Herausforderung bei der atmosphärischen Modellierung ist die Parametrisierung der Schnittstelle zwischen heterogener dynamischer Vegetation und ABL unter instabilen, stabilen und neutralen Bedingungen mit Advektion aus verschiedenen Windrichtungen. Dementsprechend sind unsere Ziele die Identifizierung der „Blending Height“ in Abhängigkeit von der Heterogenität und dem Zustand der Vegetation sowie von den atmosphärischen Randbedingungen und die Quantifizierung des Einflusses der Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“. Die Ergebnisse werden verwendet, um repräsentative, skalenabhängige Flüsse auf dieser Ebene für Land-Atmosphären (L-A) Rückkopplungsstudien und Turbulenzparametrisierungen abzuleiten. WRF-NoahMP-Gecros-Modellsimulationen von der CP- bis zur Large-Eddy-Skala werden mit Beobachtungen an den LAFO- und MOL-RAO-Standorten verglichen, um die „Blending Height“ und die effektiven Rauhigkeitsparameter der Vegetation für CP-Simulationen in Abhängigkeit von den atmosphärischen Rahmenbedingungen zu ermitteln. Die Simulationen werden über die Cross Cutting Working Group (CCWG)-MME in das Multi Model Experiment (MME) eingebettet. Die Auswirkungen der Heterogenität auf die Stärke der L-A-Rückkopplung werden untersucht und das Verständnis der Austauschprozesse zwischen Oberfläche und Atmosphäre sowie innerhalb der ABL verbessert. Die Synergie dieser Modellergebnisse und 3D-Beobachtungsdaten wird genutzt, um die skalenabhängigen Auswirkungen der dynamischen Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“ zu untersuchen. Dieses Projekt befasst sich mit den LAFI-Hauptzielen 2, 3, 4, S und E. Es ist an der CCWG-MME und der CCWG-DL beteiligt. Die Simulationen werden in Zusammenarbeit mit den Projekten P6, P8 und P9 durchgeführt. P2 liefert den Blattflächenindex und den Anteil der Vegetationsdecke für die Initialisierung des Modells. Die LAFI-Beobachtungen von P1-P5 werden für die Modellevaluation verwendet.

1 2 3 4 5669 670 671