Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1931-1960 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1931-1960 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Bedeutung des Projekts für die Praxis: Eine ausgewogene Fruchtfolge spielt im Ackerbau, ganz besonders im biologischen Anbau, eine zentrale Rolle. Erhaltung der Bodenfruchtbarkeit, Regulierung von Unkraut und Pathogenen und Nährstoffversorgung der Pflanzen sind die wichtigsten Parameter die durch den Fruchtwechsel sichergestellt werden sollen. Wie bereits erwähnt sind Leguminosen aus einer gesunden Fruchtfolge nicht wegzudenken. Sowohl der Anbau von Körnerleguminosen als Hauptfrucht, als auch der Anbau von Leguminosen in Zwischenfrüchten ist zu fördern. Im Herbst 2016, nachdem die Ertragseinbußen durch PNYDV in Grünerbsen und Ackerbohnen, aber auch Linsen und Sommerwicken an vielen Standorten in Ober- und Niederösterreich und im Burgenland klar ersichtlich waren, waren viele Landwirte verunsichert, ob sie weiter Ackerbohnen anbauen sollen, und ob sie nicht besser leguminosenfreie Zwischenfrüchte verwenden sollen. Die Winter werden zunehmend wärmer, und wie die Erfahrungen 2014/2015 und 2015/2016 gezeigt haben, kann nicht davon ausgegangen werden, dass alle abfrostenden Leguminosen auch wirklich in jedem Winter abfrieren. Besonders in Gebieten, wo Grünerbsen, Körnererbsen, Ackerbohnen oder Linsen angebaut werden, ist anzuraten, in Zwischenfrüchten auf Leguminosen zu verzichten, die anfällig für PNYDV sind. So kann verhindert werden, dass der Virus in infizierten Pflanzen überwintert, und diese Pflanzen als Inokulum für eine neue Vegetationsperiode fungieren. Das vorliegende Projekt soll klären welche Leguminosenarten Wirtspflanzen für PNYDV sind. Das Wissen um die Anfälligkeit verschiedener Leguminosen, und somit um ihre Verwendungsmöglichkeiten erhöht die Sicherheit bei den Landwirten und verhindert, dass aus Unsicherheit auf Leguminosen verzichtet wird. Zwar konnten auch die beiden Nanovirenarten Black medic leaf roll virus (BMLRV) und Pea yellow stunt virus (PYSV) schon in Österreich nachgewiesen werden, im Monitoring 2016 wurde jedoch nur das Pea necrotic yellow dwarf virus (PNYDV) bestätigt. Über BMLRV und PYSV, ihre Wirtspflanzen und Vektoren ist noch kaum etwas bekannt. Es ist von großer Wichtigkeit durch regelmäßige Monitorings zu überprüfen welche Nanoviren vorhanden sind, da BMLRV oder PYSV eventuell auch Leguminosen befallen könnten, die für PNYDV keine Wirtspflanzen sind, wie beispielsweise Sojabohne oder Luzerne. Werden Maßnahmen zur Steigerung der Wettbewerbsfähigkeit von Leguminosen gefördert hat das auch weitreichendere Folgen. Neben einem geringeren Düngemittel- und Pestizidaufwand durch den Anbau von Leguminosen in gesunden Fruchtfolgen, und damit den positiven Auswirkungen auf die Umwelt, dienen Leguminosen auch als Bienenweiden, oder erhöhen die Vielfalt an Kulturpflanzen, was sich auf das Landschaftsbild positiv auswirkt. (Text gekürzt)
Standorte von Beregnungsbrunnen für die Feldberegnung im Landkreis Nienburg/Weser. Vor allem auf Standorten mit leichten Böden kann es während der Vegetationsperiode bei defizitären Niederschlagsverhältnissen erforderlich werden, zur Qualitäts- und Ertragssicherung der angebauten Feldfrüchte eine Beregnungsanlage einsetzen zu müssen. Neben der Beregnung zu Trockenzeiten kann bei bestimmten Sonderkulturen im Frühjahr der Einsatz einer Frostschutzberegnung als Maßnahme des Pflanzenschutzes erforderlich werden.
Die groesste Zahl chemischer Behandlungen (ca. 2/3) faellt im Obstbau auf die Zeit des Heranwachsens der Fruechte (Mai bis Oktober). Aus biologischen Gruenden und zum Schutze des Verbrauchers waere es wuenschenswert, die Bekaempfungsmassnahmen auf die Zeit vor Beginn des Fruchtansatzes zu konzentrieren. Mit vorliegendem Versuchsprogramm wird die Art der Ueberwinterung einiger der wichtigsten Schadpilze von Obstbaeumen und die Moeglichkeit der Bekaempfung der Ueberwinterungsherde naeher untersucht.
Seit Beginn der 80er Jahre wird in der Ursachenforschung der Waldschaeden bestimmten Luftschadstoffen eine entscheidende Rolle beigemessen. Aus diesem Grund wurde von der Forstlichen Versuchs- und Forschungsanstalt Baden-Wuerttemberg ein Pilotprojekt begonnen. Ziel dieses Vorprojektes war die Entwicklung und Erprobung einer Grosskammer zur Untersuchung von Filterwirkung, Wintertauglichkeit und Kammerklima. Solche 'oben offenen Experimentierkammern' bieten die Moeglichkeit, Luftschadstoffe der Umgebungsluft auszuschliessen. Aus den Kontrollen mit den jeweiligen Freiluftbaeumen lassen sich dann Rueckschluesse auf die Auswirkungen der verschiedenen Schadstoffe ziehen. Dieses Pilotprojekt wurde im Muenstertal im Suedschwarzwald in 850 m ue NN durchgefuehrt. Die praktische Erprobung waehrend zweier Betriebsjahre zeigte einen weitgehend stoerungsfreien Kammerbetrieb. Die hoelzerne Konstruktion und die Folienbespannung widerstanden allen Belastungen durch Wind und Schnee. Lueftungs- und Filterungssystem arbeiteten befriedigend. Im Gegensatz zum technischen Kammerbetrieb bleiben die qualitativen Kammerbedingungen hinter den Erfordernissen zurueck. Eine wesentliche Abweichung von den Freilandbedingungen stellten die fehlenden Nebel- und Tauereignisse dar. Aus immissionsoekologischer Sicht entfielen hierdurch Depositionen, die fuer das aktuelle Schadensphaenomen der montanen Nadelvergilbung von besonderer Bedeutung sein koennten. Die nahezu lueckenlosen Messreihen der Klimawerte belegten ferner, dass die grundlegende Forderung nach einem freilandaehnlichen Kammerklima in den getesteten Kammern nur bedingt erfuellt werden konnte. Dies traf insbesondere fuer Luft- und Bodentemperaturen, fuer die relative Luftfeuchtigkeit und die Strahlungsverhaeltnisse zu. Aufgrund der beobachteten Klimaeffekte sowie des Fehlens wesentlicher immissionsoekologischer Feuchtefaktoren lassen die Testpflanzen sowohl kurz- als auch langfristig Wuchs- und Symptomreaktionen erwarten, die nicht mit denen des Freilandes vergleichbar sind. Unter diesen Bedingungen ist nur der Vergleich von Kammer zu Kammer statthaft. Die Durchfuehrung spezieller Kurzzeitexperimente (zB waehrend einer Vegetationsperiode) mit den Behandlungsvarianten Rein- und Umgebungsluft scheiterte an der relativ geringen Luftschadstoffbelastung des Projektstandortes. Gegen Langzeit-Experimente sprachen die nicht vergleichbaren Wachstumgsbedingungen innerhalb und ausserhalb der Kammern. Um uebertragbare Kammerergebnisse zu erzielen, muessten kostenintensive Optimierungsmassnahmen vorgenommen werden. Vorrangige Verbesserungen waeren im Bereich der Lichtbedingungen und der Temperaturreduktion angezeigt. Die Steuerungsgruppe kam zu dem abschliessenden Ergebnis, dass das Projekt im Vorprojektstadium abgeschlossen und am Standort 'Muenstertal' nicht in ein langfristiges Abschlussprojekt uebergeleitet werden sollte.
Unser Wissen zur Ökologie und Bedeutung von Mikroorganismen in Böden ist umfassend. Dies gilt im Gegensatz dazu nicht für die Ökologie der Viren. Erkenntnisse dazu hinken dem Kenntnisstand aus aquatischen Lebensräumen weit hinterher. Böden beherbergen eine große Anzahl an Viren und das Viren - Wirt Verhältnis liegt meist deutlich über jenem in aquatischen Systemen. Unterschiede in den Virenpopulationen können teilweise auf unterschiedliche Bodencharakteristika (pH, Wassergehalt, Anteil an organischem Material) erklärt werden. Dies lässt den Schluss zu, dass Unterschiede in der Landnutzung entsprechend die Virenabundanz als auch Viren - Wirt Interaktionen beeinflussen. In Böden tragen bis zu 68% aller Bakterien induzierbare Prophagen, ein Hinweis darauf, dass die Heterogenität im Boden und die ungleiche Verteilung der Mikroorganismen eine lysogene Vermehrung von Viren selektiert. Dies hat zur Folge, dass der Austausch von genetischer Information zwischen Virus und Wirt vorwiegend durch Transduktion stattfindet. Bis dato analysierte Virenmetagenome aus dem Boden bestanden bis zu 50% aus transduzierten Genen prokaryotischen Ursprungs. Obwohl davon ausgegangen werden kann, dass Viren im Boden, wie für aquatische Lebensräume gezeigt, einen signifikanten Einfluss auf die räumliche und zeitliche Dynamik ihrer Wirte (Killing the Winner Hypothese) und deren kontinuierliche Anpassung (Red Queen Hypothese), wichtige Ökosystemfunktionen und biogeochemische Prozesse haben, kennen wir die Art und Häufigkeit der Interaktionen nicht und empirische Daten fehlen. Wir postulieren, dass Transduktion eine wichtige Rolle für die Resilienz von Böden unter intensiver Landnutzung spielt, da in diesen Böden i) die mikrobielle Diversität vergleichsweise niedrig ist, was zu einer erhöhten Sensitivität gegenüber Veränderungen in den Umweltbedingungen führt. Andererseits, ii) hat die durch Düngung erhöhte spezifische Aktivität von Mikroorganismen eine erhöhte Transduktionsrate zur Folge, da Viren für ihre Vervielfältigung auf metabolisch aktive Wirte angewiesen sind. Um unsere Hypothese zu überprüfen, werden wir an 150 Standorten der Biodiversitäts-Exploratorien und im Detail an einer Auswahl an Grünlandstandorten mit unterschiedlicher Intensität der Bewirtschaftung Untersuchungen durchführen. Analysiert wird die Beziehung zwischen Virenabundanzen und VBRs mit der Bewirtschaftung, der Vegetationsperiode und den vorherrschenden Umweltbedingungen. Zusätzlich untersuchen wir mit Hilfe moderner molekularer Methoden die Zusammensetzung der Virengemeinschaften und ihre Diversität, sowie viren-assoziierte Funktionen prokaryotischen Ursprungs. Experimente zu Virus-Wirt Interaktionen und die Analyse von CRISPR like structures in den prokaryotischen Wirten werden Erkenntnisse zu der Ökologie bakterieller Gemeinschaften liefern. Nicht zuletzt werden wir Viren von abundanten Bodenbakterien (z.B. Pseudomonaden) für vergleichende Genomanalysen und Kreuzinfektionsversuche isolieren.
Der Datensatz beinhaltet Daten vom LBGR über die Wärmeleitfähigkeit Brandenburgs bei Permanentem Welkepunkt (PWP) - im Spätsommer und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Es werden die mittlere Wärmeleitfähigkeit als gewichtetes Mittel bis 2m Tiefe mit Wassergehalten bei Permanentem Welkepunkt (pF 4,2) dargestellt. Sie entspricht den standortabhängigen, im Jahresverlauf niedrigsten Wärmeleitfähigkeiten wie sie im Spätsommer am Ende der Vegetationsperiode zu erwarten sind. Grundwasserstände wurden bei der Berechnung berücksichtigt. Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.
| Origin | Count |
|---|---|
| Bund | 1983 |
| Kommune | 2 |
| Land | 217 |
| Wissenschaft | 250 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 3 |
| Daten und Messstellen | 1627 |
| Ereignis | 2 |
| Förderprogramm | 501 |
| Hochwertiger Datensatz | 1 |
| Kartendienst | 1 |
| Text | 101 |
| Umweltprüfung | 5 |
| unbekannt | 140 |
| License | Count |
|---|---|
| geschlossen | 1524 |
| offen | 838 |
| unbekannt | 19 |
| Language | Count |
|---|---|
| Deutsch | 2094 |
| Englisch | 1366 |
| Resource type | Count |
|---|---|
| Archiv | 37 |
| Bild | 13 |
| Datei | 1617 |
| Dokument | 76 |
| Keine | 463 |
| Multimedia | 1 |
| Unbekannt | 6 |
| Webdienst | 61 |
| Webseite | 1249 |
| Topic | Count |
|---|---|
| Boden | 1383 |
| Lebewesen und Lebensräume | 2381 |
| Luft | 1441 |
| Mensch und Umwelt | 2140 |
| Wasser | 1184 |
| Weitere | 2367 |