API src

Found 367 results.

DFG Trilateral collaboration Deutschland-Israel-Palestine: Wastewater from Olive Oil Mills in Israel and Palestine: Interactions with Soil, Organic Contaminants and Mechanisms of Incorporation into Soil

Due to the often practised uncontrolled disposal into the environment, olive oil production wastewater (OPWW) is presently a serious environmental problem in Palestine and Israel. The objectives of this interdisciplinary trilateral research project are (i) to understand the mechanisms of influence of the olive oil production wastewater on soil wettability, water storage, interaction with organic agrochemicals and pollutants; (ii) monitor short-term and long-term effects of OPWW land application in model laboratory and field experiments; (iii) identify the components responsible for unwanted changes in soil properties and (iv) analyse the mechanisms of association of OPWW OM with soil, the interplay between climatic conditions, pH, presence of multivalent cations and the resulting effects of land application. Laboratory incubation experiments, field experiments and new experiments to study heat-induced water repellency will be conducted to identify responsible OPWW compounds and mechanisms of interaction. Samples from field experiments and laboratory experiments are investigated using 3D excitation-emission fluorescence spectroscopy, thermogravimetry-differential thermal analysis-mass spectrometry (TGA-DSC-MS), LC-MS and GC-MS analyses. We will combine thermal decomposition profiles from OPWW and OPWW-treated soils in dependence of the incubation status using TGA-DSC-MS, contact angle measurements, sorption isotherms and the newly developed time dependent sessile drop method (TISED). The resulting process understanding will open a perspective for OPWW wastewater reuse in small-scale and family-scale olive oil production busi-nesses in the Mediterranean area and will further help to comprehend the until now not fully un-ravelled effects of wastewater irrigation on soil water repellency.

The iron-snow regime in Fe-FeS cores: a numerical and experimental approach

In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.

Linking soil architecture formation with changing permafrost regime to carbon turnover in high latitude soils at multiple spatial scales

Most soils develop distinct soil architecture during pedogenesis and soil organic carbon (SOC) is sequestered within a hierarchical system of mineral-organic associations and aggregates. Permafrost soils store large amounts of carbon due to their permanently frozen subsoil and a lack of oxygen in the active layer, but they lack complex soil structure. With permafrost thaw more oxidative conditions and increasing soil temperature presumably enhance the build-up of more complex units of soil architecture and may counterbalance, at least partly, SOC mineralization. We aim to explore the development of mineral-organic associations and aggregates under different permafrost impact with respect to SOC stabilization. This information will be linked to environmental control factors relevant for SOC turnover at the pedon and stand scale to bridge processes occurring at the aggregate scale to larger spatial dimensions. We will combine in situ spectroscopic techniques with fractionation approaches and identify mechanisms relevant for SOC turnover at different scales by multivariate statistics and variogram analyses. From this we expect a deeper knowledge about soil architecture formation in the transition of permafrost soils to terrestrial soils and a scale-spanning mechanistic understanding of SOC cycling in permafrost regions.

Nationale und internationale Hochwasserschutzpolitik am Rhein. Eine Mehrebenen-Politikfeldanalyse

Die Hochwasserereignisse im Dezember 1993 und Januar 1995 am Rhein, Juli/August 1997 an der Oder sowie im August 2002 an der Elbe und die hervorgerufenen Schäden haben in Deutschland zu der Erkenntnis geführt, dass baulich-technische Hochwasserschutzmaßnahmen nicht ausreichen, sondern dass ein vorsorgeorientiertes, die Ziele einer dauerhaft umweltgerechten Entwicklung verfolgendes Hochwassermanagement erforderlich ist. Dazu zählen der technische Hochwasserschutz, die weitergehende Hochwasservorsorge und die Flächenvorsorge zum natürlichen Rückhalt als vorbeugender Hochwasserschutz. Allerdings treten Defizite bei der Operationalisierung dieser politischen Ziele und Strategien auf der Umsetzungsebene auf. Es bleibt bisher die Frage unbeantwortet, ob es sich dabei um Regelungs- oder Vollzugsdefizite handelt. Das Forschungsvorhaben am Institut für Forst- und Umweltpolitik verfolgt das Ziel, die Bedingungen für die Implementation von existierenden politischen Initiativen zum vorbeugenden Hochwasserschutz zu untersuchen. Bedeutsam für die Untersuchung ist dabei die Betrachtung von Akteuren der verschiedenen politischen Ebenen und Sektoren im Durchführungsprozess, deren Kommunikations- und Machtstrukturen sowie der eingesetzten Instrumente, um hieraus Erkenntnisse über die politische Steuerung und deren Wirkung gewinnen zu können. Die Politikfeldanalyse sieht den Vergleich der Hochwasserschutzpolitik der Bundesländer Nordrhein-Westfalen, Rheinland-Pfalz und Baden-Württemberg vor und wird unter Verwendung von Methoden der qualitativen Sozialforschung durchgeführt. Im Ergebnis sollen Effizienzfaktoren ermittelt und schließlich Handlungsempfehlungen für die Implementation von ressort- und grenzübergreifenden Planungsprozessen in komplexen politischen Systemen abgeleitet werden.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM), Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

ERA-NET - Development of test methods for non wood small-scale combustion plants

Non wood fuels for small-scale furnaces have attracted increasing interest in several European countries. New technological approaches are on the way, but the verification of any such developments is difficult and there is a large uncertainty about testing procedures and equipment. While for wood combustion standardized European measuring regulations are available and broadly applied, the testing of cereal fuel combustion is generally not following a commonly accepted procedure. Consequently the results of such measurements are not fully comparable. This applies particularly for the international level, which is here of particular relevance due to the fact that a combustion technology development for a niche application can only be economically viable if a sufficiently large marketing area can be taken into focus. The overall objective of the proposal is therefore to contribute through research to the development of uniform and comparable European procedures for testing of small-scale boilers up to a power out of 300 kW for solid biomass from agriculture like straw pellets and energy grain. The driving forces and barriers will be worked out; existing legal regulation for the installation (approval by the local authorities) in the participating countries will be collected. The state of the art of the non wood biomass boiler technology will be identified; the need for standardized tests for type approval tests and the measures to establish a European Standard will be shown. Measurement methods with special emphasis on efficiency and emissions will be worked out and the requirements and specifications of test fuels will be proposed. Test runs will be carried out following preliminary test procedures based on existing European standards for wood boilers. Based on the results of these test runs a draft for a Europe-wide uniform test procedure will be proposed. Preparatory work for a European standardization process including a round robin test will be done.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Forschergruppe (FOR) 861: Cross-scale Monitoring: Biodiversity and Ecosystem Functions, Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

Between Path Dependence and Path Creation: The Impact of Farmers' Behavior and Policies on Structural Change in Agriculture

Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.

Stakeholders, Interests and Power as Drivers of Community Forestry: Comparative Analysis of Albania, Germany, Cameroon, Indonesia, Namibia, Nepal and Thailand

Community forestry has not met the great public expectations on a significant contribution to sustainable forestry yet. Recent research in the management and policy of community forestry describes a complex process of multi level social choice which determines the outcomes. Our hypothesis is that the key factors determining the outcomes of community forestry are the interests and power of the external stake holders. This hypothesis will be tested in a comparative quantitative and qualitative analysis. In seven countries comprising developed and developing countries 84 cases will be used for comparison. The comparative analysis will be carried out by one PhD student financed by the project. He will do the field work in close cooperation with PhD students who are already conducting their PhD analysis the different countries. The comparative analysis is aimed to explore key drivers of community forestry which are not yet identified in literature.

1 2 3 4 535 36 37