Electrical conductivity is a key parameter in models of magnetic field generation in planetary interiors through magneto-hydrodynamic convection. Measurements of this key material parameter of liquid metals is not possible to date by experiments at relevant conditions, and dynamo models rely on extrapolations from low pressure/temperature experiments, or more recently on ab-initio calculations combining molecular dynamics and linear response calculations, using the Kubo-Greenwood formulation of transport coefficients. Such calculations have been performed for Fe, Fe-alloys, H, He and H-He mixtures to cover the interior of terrestrial and giant gas planets. These simulations are computationally expensive, and an efficient accurate scheme to determine electrical conductivities is desirable. Here we propose a model that can, at much lower computational costs, provide this information. It is based on Ziman theory of electrical conductivity that uses information on the liquid structure, combined with an internally consistent model of potentials for the electron-electron, electron-atom, and atom-atom interactions. In the proposal we formulate the theory and expand it to multi-component systems. We point out that fitting the liquid structure factor is the critical component in the process, and devise strategies on how this can be done efficiently. Fitting the structure factor in a thermodynamically consistent way and having a transferable electron-atom potential we can then relatively cheaply predict the electrical conductivity for a wide range of conditions. Only limited molecular dynamics simulations to obtain the structure factors are required.In the proposed project we will test and advance this model for liquid aluminum, a free-electron like metal, that we have studied with the Kubo-Greenwood method previously. We will then be able to predict the conductivities of Fe, Fe-light elements and H, He, as well as the H-He system that are relevant to the planetary interiors of terrestrial and giant gas planets, respectively.
Due to the often practised uncontrolled disposal into the environment, olive oil production wastewater (OPWW) is presently a serious environmental problem in Palestine and Israel. The objectives of this interdisciplinary trilateral research project are (i) to understand the mechanisms of influence of the olive oil production wastewater on soil wettability, water storage, interaction with organic agrochemicals and pollutants; (ii) monitor short-term and long-term effects of OPWW land application in model laboratory and field experiments; (iii) identify the components responsible for unwanted changes in soil properties and (iv) analyse the mechanisms of association of OPWW OM with soil, the interplay between climatic conditions, pH, presence of multivalent cations and the resulting effects of land application. Laboratory incubation experiments, field experiments and new experiments to study heat-induced water repellency will be conducted to identify responsible OPWW compounds and mechanisms of interaction. Samples from field experiments and laboratory experiments are investigated using 3D excitation-emission fluorescence spectroscopy, thermogravimetry-differential thermal analysis-mass spectrometry (TGA-DSC-MS), LC-MS and GC-MS analyses. We will combine thermal decomposition profiles from OPWW and OPWW-treated soils in dependence of the incubation status using TGA-DSC-MS, contact angle measurements, sorption isotherms and the newly developed time dependent sessile drop method (TISED). The resulting process understanding will open a perspective for OPWW wastewater reuse in small-scale and family-scale olive oil production busi-nesses in the Mediterranean area and will further help to comprehend the until now not fully un-ravelled effects of wastewater irrigation on soil water repellency.
In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.
Most soils develop distinct soil architecture during pedogenesis and soil organic carbon (SOC) is sequestered within a hierarchical system of mineral-organic associations and aggregates. Permafrost soils store large amounts of carbon due to their permanently frozen subsoil and a lack of oxygen in the active layer, but they lack complex soil structure. With permafrost thaw more oxidative conditions and increasing soil temperature presumably enhance the build-up of more complex units of soil architecture and may counterbalance, at least partly, SOC mineralization. We aim to explore the development of mineral-organic associations and aggregates under different permafrost impact with respect to SOC stabilization. This information will be linked to environmental control factors relevant for SOC turnover at the pedon and stand scale to bridge processes occurring at the aggregate scale to larger spatial dimensions. We will combine in situ spectroscopic techniques with fractionation approaches and identify mechanisms relevant for SOC turnover at different scales by multivariate statistics and variogram analyses. From this we expect a deeper knowledge about soil architecture formation in the transition of permafrost soils to terrestrial soils and a scale-spanning mechanistic understanding of SOC cycling in permafrost regions.
The project's objective is to support JRC IPTS in revising the existing Ecolabel and GPP criteria of personal computers and notebook computers. The priority in this revision process is to first analyse which of the existing criteria and the supporting evidence are still valid and to identify the additional research that should be carried out. Potential additional criteria can be developed, if identified as necessary in the course of the study. The study starts with a definition of the scope; the necessarity for new or revised Ecolabel and GPP criteria is based on a market analysis and a technical analysis with research on the most significant environmental impacts during the whole life cycle of the products. This also includes the application of a consistent methodological approach regarding the hazardous substances criteria. Based on these findings, the improvement potential will be derived resulting in a proposal for a revised Ecolabel and GPP criteria set for desktop and notebook computers which will be discussed in a European stakeholder process.
The proposal addresses the potential of subsoil to contribute to K nutrition of crops. More specifically we will address the processes controlling release of K from interlayer of 2:1 clay minerals as this is expected to be the dominant K fraction in the subsoil. While it has been shown in the past that this so called 'non-exchangeable' K can be released due to root activity, there are controversial results concerning the role of soil solution K concentration in the rhizosphere required to trigger the process. Likewise little information is available about the concentration dynamics of other cations (NH4, Ca) in the rhizosphere and their impact on K release and vermiculitization supposed to be associated with this process. Model studies with substrate from the central field trial will be conducted in compartment systems equipped with micro suction cups. The measurement of dynamic changes of soil solution composition with increasing distance from the root surface will be combined with investigations of changes in mineralogy by XRD, TEM and SEM-EDX. Changes of mineralogy as a result of plant induced K release from interlayer will also be studied on bulk soil and rhizosphere samples collected within the central field and the central microcosm experiment and with mineral bags exposed in the field during a cropping cycle. Finally, X-ray CT will be used to access changes in soil texture, i.e. clay distribution around roots and the temporal spread of roots in biopores which is a prerequisite for K uptake from such structures.
The project's objective is to support JRC IPTS in revising the existing Ecolabel and GPP criteria of televisions. The priority in this revision process is to first analyse which of the existing criteria and the supporting evidence are still valid and to identify the additional research that should be carried out. Potential additional criteria can be developed, if identified as necessary in the course of the study. The study starts with a definition of the scope; the necessarity for new or revised Ecolabel and GPP criteria is based on a market analysis and a technical analysis with research on the most significant environmental impacts during the whole life cycle of the products. This also includes the application of a consistent methodological approach regarding the hazardous substances criteria. Based on these findings, the improvement potential will be derived resulting in a proposal for a revised Ecolabel and GPP criteria set for televisions which will be discussed in a European stakeholder process.
The vegetation of East and South African savannahs has been shaped by the complex interaction of geo-biophysical processes and human impact. For both regions a controversial discussion is pertinent, as to whether massive degradation threatens the sustainability of livelihoods in these regions. Rangeland vegetation is mainly affected by environmental conditions (soil and climate) and by livestock management. Extent and interaction of these drivers are not well understood but have profound impacts on the resilience and vulnerability of these systems to be shifted toward unfavourable degraded or bush encroached states. The project aims to analyse and model rangeland vegetation in response to range management including livestock, soil quality and climatic conditions and to assess the impacts of changes in these conditions on the resilience and vulnerability of rangeland systems. Field measurements, remote sensing of vegetation patterns and dynamics and simulation modelling will be used to understand the dynamics of rangeland vegetation. We will use the 'fast' or 'state' variables potential of pastures to produce palatable biomass, the variability of this production, and the system's potential to recover from disturbance impact as indicators of resilience. 'slow' variables that control (or drive) the 'fast' variables such as management, climate and soil variables are recorded in cooperation with other subprojects as with A1 for soil variables. Results of the project will show which management activities are most favourable for individual regions to sustain plant production in the long term.
The final goal of the EUROWET project is to integrate the substantial multidisciplinary European research in wetlands to help attain the sustainable management of the water cycle. This will be achieved by the translation of state-of-the art science developed at both national and European levels, into practical guidance for end-users. This will be achieved by a comprehensive review, expert assessment and a focussed dissemination strategy. There is considerable scientific knowledge and technical experience gained in diverse aspects of wetland science and management including hydrology, biogeochemistry, ecology restoration, socio-economic and policy analysis. However the results of research and management experience are still too fragmentary and not sufficiently orientated to problem-solving or simply inadequately framed to be effectively transferred to, or used by, stakeholders and policy-makers. Simultaneously the general outcome of the scientific research has been increased awareness of the significance of wetlands in delivering goods and services important for human welfare including quality of life, biodiversity conservation and maintenance or enhancement of environment quality. Despite this wetlands continue to be degraded and lost throughout Europe without adequate consideration of the wider benefits to be achieved from this management. The new Water Framework Directive (WFD) promotes a unique opportunity to redress this problem by means of the holistic, integrated approach to water management. There is currently in preparation horizontal guidance on Wetlands as part of the Common Implementation Strategy (CIS) process. There is however work still to be done on providing more specific scientific and technical guidance on the effective implementation of the Directive with respect to wetlands. This is particularly the case in relation to Integrated River Management, the CIS cluster within which wetlands are being considered in the WFD.
Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
| Origin | Count |
|---|---|
| Bund | 424 |
| Type | Count |
|---|---|
| Förderprogramm | 424 |
| License | Count |
|---|---|
| offen | 424 |
| Language | Count |
|---|---|
| Deutsch | 77 |
| Englisch | 411 |
| Resource type | Count |
|---|---|
| Keine | 327 |
| Webseite | 97 |
| Topic | Count |
|---|---|
| Boden | 375 |
| Lebewesen und Lebensräume | 397 |
| Luft | 313 |
| Mensch und Umwelt | 424 |
| Wasser | 331 |
| Weitere | 424 |