API src

Found 425 results.

Charakterisierung der mit Natriumpyrophosphat löslichen organischen Bodensusbstanz mittels FT-IR

Das Projekt "Charakterisierung der mit Natriumpyrophosphat löslichen organischen Bodensusbstanz mittels FT-IR" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Bodenlandschaftsforschung durchgeführt. Zusammensetzung und Menge der organischen Bodensubstanz (OBS) werden durch die Landnutzungsform beeinflußt. Die OBS läßt sich nach ihrer Abbaubarkeit und nach ihrer Löslichkeit in verschiedene Pools einteilen. So kann die wasserlösliche organische Bodensubstanz (DOM) als Maßzahl für die abbaubare OBS herangezogen werden. Mit Natriumpyrophosphat-Lösung als Extraktionsmittel läßt sich ein weit größerer Anteil der OBS erfassen, da der stabilisierende Bindungsfaktor zwischen OBS und Bodenmineralen entfernt wird. Extrahiert man zuerst mit Wasser und anschließend mit Natriumpyrophosphat-Lösung, erhält man im letzten Schritt den schwer abbaubaren OBS-Anteil. Über die funktionelle Zusammensetzung der organischen Substanz dieser Pools und deren Abhängigkeit von Landnutzungsformen ist relativ wenig bekannt. Ziel der geplanten Untersuchung ist es, den Pool der löslichen abbaubaren und schwer abbaubaren OBS zu quantifizieren und deren funktionelle Zusammensetzung mittels FT-IR Spektroskopie zu erfassen. Die so gewonnenen Daten sollen der Validierung von Soil Organic Matter Turnover modellen (z.B. Roth 23.6) dienen und die im Modell berechneten Pools um einen qualitativen Term ergänzen. In Zusammenarbeit mit anderen Arbeitsgruppen sollen im DFG-Schwerpunktprogramm 1090: ;Böden als Quelle und Senke für CO2 die Pools der löslichen abbaubaren und schwer schwer löslichen, schwer abbaubaren organischen Bodensubstanz (OBS) quantifiziert, die funktionelle Zusammensetzung dieser Pools mittels FT-IR Spektroskopie erfasst und Abbaubarkeit der erhaltenen Extrakte überprüft werden, um Mechanismen, die zur Stabilisierung der OBS führen, aufzuklären.

Appearance of decay in forest no longer mantained as assessed by visitors of a national park

Das Projekt "Appearance of decay in forest no longer mantained as assessed by visitors of a national park" wird vom Umweltbundesamt gefördert und von Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft durchgeführt. A major concern for landscape conservation strategies is the public attitude towards nature in general and towards efforts to let nature return to the cultvated landscape. In this context we investigate the attitudes of national park visitors towards declining forest patches that shift from a pioneer stage to a more mature stage. It was shown that the phenomenon of decaying forests is perceived positively if the visitors are well-informed with on-site information of the underlaying natural processes.

ALPCHANGE - Klimawandel und Auswirkungen in südösterreichischen Hochgebirgsräumen

Das Projekt "ALPCHANGE - Klimawandel und Auswirkungen in südösterreichischen Hochgebirgsräumen" wird vom Umweltbundesamt gefördert und von Technische Universität Graz, Institut für Fernerkundung und Photogrammetrie durchgeführt. ALPCHANGE beschreibt quantitativ die durch den Klimawandel verursachte Landschaftsdynamik in alpinen Regionen Südösterreichs. Dies geschieht durch die integrative und umfassende Analyse aus Beobachtungsdaten der vier Landschaftsparameter Permafrost, Gletscher, Schnee und Geomorphologie. Diese Parameter reagieren zeitlich unterschiedlich auf geänderte Umweltbedingungen und liefern so Informationen in verschiedenen Zeitebenen: Schnee unmittelbar, Gletscher und geomorphologische Strukturen innerhalb von Jahren bis Jahrzehnten bzw. Permafrost innerhalb von Jahrzehnten bis Jahrhunderten. Diese Zusammenhänge werden mittels eines umfassenden Monitoring-Netzwerkes in den Hohen Tauern durchgeführt zum ersten Mal in Südösterreich. Die Interdisziplinarität dieses Forschungsansatzes Glaziologie, Hochgebirgsgeographie, Geophysik, Atmosphärenphysik, Geologie versammelt viele nationale wie auch internationale Institutionen in einer Arbeitsgemeinschaft. Wissenschaftler verschiedener Institute an der Universität Graz bzw. der Technischen Universität Graz sind seit Jahrzehnten in den Forschungsbereichen Klima- und Umweltwandel aktiv. ALPCHANGE ist unter anderem auch aus jenen Initiativen entstanden, die zur Gründung des Wegener Zentrums für Klima und Globalen Wandel (WegCenter) führten.

Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor

Das Projekt "Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. In ecological sanitation, the wastewater is considered not only as a pollutant, but also as a resource for fertiliser, water and energy and for closing water and nutrients cycles (Otterpohl et. al., 1999; Otterpohl et. al., 2003; Elmitwalli et al. 2005). The ecological sanitation based on separation between grey and black water (and even between faeces and urine), is considered a visible future solution for wastewater collection and treatment. Grey water, which symbolises the wastewater generated in the household excluding toilet wastewater (black water), represents the major volume of the domestic wastewater (60- 75 percent) with low content of nutrients and pathogens (Otterpohl et. al., 1999; Jefferson et al., 1999; Eriksson et al., 2002). Most of grey-water treatment plants include one or two-step septic-tank for pre-treatment (Otterpohl et al., 2003). The grey-water treatment needs both physical and biological processes for removal of particles, dissolved organic-matters and pathogens (Jefferson et al., 1999). Recently, many researchers have studied the grey-water treatment either by application of high-rate aerobic systems, like rotating biological contactor (Nolde, 1999), fluidised bed (Nolde, 1999), aerobic filter (Jefferson et al., 2000), membrane bioreactor (Jefferson et al., 2000), or by application of low-rate systems, like slow sand filter (Jefferson et al., 1999), vertical flow wetlands (Otterpohl et. al., 2003). Although high-rate anaerobic systems, which are low-cost systems, have both physical and biological removal, no research has been done until now on grey water in these systems. The grey water contains a significant amount (41 percent) of chemical oxygen demand (COD) in the domestic wastewater (Otterpohl et al., 2003) and this amount can be removed by the highrate anaerobic systems. Although high-rate anaerobic systems have been successfully operated in tropical regions for domestic wastewater treatment, the process up till now is not applied in lowtemperature regions. The COD removal is limited for domestic wastewater treatment in high-rate anaerobic systems at low temperatures and, therefore, a long HRT is needed for providing sufficient hydrolysis of particulate organic (Zeeman and Lettinga, 1999; Elmitwalli et al. 2002). The grey water has a relatively higher temperature (18-38 degree C), as compared to the domestic wastewater (Eriksson et al. 2002), because the grey water originates from hot water sources, like shower (29 degree C), kitchen (27-38 degree C) and laundry (28-32 degree C). Therefore, high-rate anaerobic systems might run efficiently for on-site grey water treatment, even in low-temperature regions. The upflow anaerobic sludge blanket (UASB) reactor is the most applied system for anaerobic domestic waster treatment. Accordingly, the aim of this research is to study the feasibility of application of UASB reactor for the treatment of grey water at low and controlled (30 degree C) temperatures.

Forest management in the Earth system

Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)

Das Projekt "Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. Project main goals: The main purpose of this project is to develop an innovative 400 kWth solar reformer for several applications such as Hydrogen production or electricity generation. Depending of the feed source for the reforming process CO2 emissions can be reduced significantly (up to 40 percent using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy. A pre-design of a 1 MW prototype plant in Southern Italy and a conceptual layout of a commercial 50 MWth reforming plant complete this project. Key issues: The profitability decides if a new technology has a chance to come into the market. Therefore several modifications and improvements to the state-of-the-art solar reformer technology will be introduced before large scale and commercial system can be developed. These changes are primarily to the catalytic system, the reactor optimisation and operation procedures and the associated optics for concentrating the solar radiation. For the dissemination of solar reforming technology the regions targeted are in Southern Europe and Northern Africa. The potential markets and the impact of infrastructure and administrative restrictions will be assessed. The environmental, socio-economic and institutional impacts of solar reforming technology exploitation will be assessed with respect to sustainable development. The market potential of solar reforming technology in a liberalised European energy market will be evaluated. Detailed cost estimates for a 50 MWth commercial plant will be determined.

Biomass Fuell Cell Utility System (BIOCELLUS)

Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.

Sub project:The effect of iron(III)-sulfide interactions on electron transfer processes in anoxic aquifers

Das Projekt "Sub project:The effect of iron(III)-sulfide interactions on electron transfer processes in anoxic aquifers" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Hydrologie durchgeführt. Strong evidence exists that the oxidation of H2S by ferric (oxyhydr)oxides occurs also in ground water systems and may exert a major role for the sulphur and iron cycle and in particular for the electron and carbon flow in aquifers. To date, no systematic study has been performed that allows to quantitatively assess its significance in such systems. This project aims to fill this gap of knowledge. The extent of the reaction depends on mineral reactivity, which we hypothesize can be expressed in terms of a generalized kinetic model for the full pH range of environmental relvance. This model accounts for the adsorption of H2S at lower pH values and of HS- at circumneutral pH to the neutral ferric (oxyhydr)oxide surface to form the reactive species FeSH. Variations in reactivity may be caused by intrinsic factors such as surface acidity of the iron mineral and solution composition, such as ionic strength and competition with other ions. The overall goals of this project therefore are to demonstrate the validity of this approach in order to quantify the kinetics for abiotic anaerobic H2S oxidation by ferric (oxyhydr)oxides, and to elucidate the role of this process as a precursor reaction for further microbial transformation of sulphur species in the aquifer.

Fuel-Switch Project in the North-West of Russia

Das Projekt "Fuel-Switch Project in the North-West of Russia" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. The objective of the JI project was to replace the outdated and inefficient municipal heating installations running on coal by modern wood-fired boilers. Replacement has been done for the 43 MW capacity required for the heat supply to a town. As the wood fuel comes from sustainably managed forests GHG emissions from coal firing are avoided. Additionally, methane emissions from landfills are prevented. GFA ENVEST developed the Joint Implementation Project according to the UNFCCC modalities, covering the renewable energy component and the methane emission reduction component.The Onega JI project was the second Russian JI project that passed the JI validation process. Services provided: Identification of Project Location. Biomass Supply Assessment: Location analysis/forest resource analysis; Standing forest stock; Review of available waste wood stocks in the region; Economic and Financial Feasibility: Analysis of carbon and biomass benefits; Analysis of switching fuel systems in the identified location. Baseline Study Package for the Fuel-Switch Project: Environmental Assessment; Social Assessment; Review of the legislation to facilitate the switching of fuel source for heating purposes; Review current legislation and regulation of the energy, forestry, and environmental sectors as well as all regulations and laws affecting budgetary process and use by government of additional revenues; Intergrated stakeholder consultations. Baseline Study (BLS): Monitoring plan; Emission Reduction and Sequestration Study (ERSS); projections of the ERs that can reasonably be expected to be generated by the Project; Support for permissions, approvals and registration of the Joint Implementation project by relevant national and international authorities; Support to the project investor on monitoring and verification of emission reductions; accompanying Designated Operational Entity during the verification process; Marketing of Emission Reduction Units and Voluntary Emission Reductions on behalf of project investor; Assistance to the project investor during Emission Reduction Purchase Agreement negotiations.

Effect of lake level rise on vertical transport and mixing processes in Lake Van (Turkey)

Das Projekt "Effect of lake level rise on vertical transport and mixing processes in Lake Van (Turkey)" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Limnologisches Institut durchgeführt. Lake Van ist der größte See der Türkei. Er ist abflusslos und sein Wasser ist stark salzhaltig (21 g kg-1). Wegen des hohen Salzgehaltes ist zu erwarten, dass vertikale Mischungsprozesse im Lake Van sehr sensitiv auf erhöhte Süßwassereinträge reagieren. In diesem Projekt werden die für den vertikalen Transport im Lake Van verantwortlichen Prozesse identifiziert und der vertikale Austausch quantifiziert. Es wird untersucht, wie sich Seespiegelschwankungen (als Indiz für veränderte hydrologische Bedingungen), auf die Tiefenwassererneuerung und die Mischungsprozesse auswirken. Die Arbeit wird ihre Analysen auf Informationen aus einem breiten Spektrum von Umwelttracern stützen (Temperatur, Salzgehalt, Lichttransmission, gelöster Sauerstoff, SF6, CFC-12, 3H, 3He und weitere Edelgase). Die entsprechenden Daten und Proben für Laboranalysen werden in zwei Feldkampagnen auf dem Lake Van erhoben. Der Seespiegelanstieg des Lake Van in den letzen Jahrzehnten bietet eine ausgezeichnete Möglichkeit, die Auswirkung von Veränderungen in den hydrologischen Bedingungen im Einzugsgebiet auf die Mischungsdynamik in salzhaltigen Seen zu untersuchen. Insbesondere ist dies der Fall, da am Lake Van neue Tracermessungen mit einem bereits vorhandenen Datensatz verglichen werden können, der 1989 kurz nach Beginn des letzten signifikanten Seespiegelanstiegs erhoben wurde. Eine Veränderung der Mischungsdynamik hat eine Auswirkung auf die Wechselwirkungen im Ökosystem und kann so Signale in Sedimentkernen beeinflussen. Daher liefert dieses Projekt wichtige Hintergrundinformation für die Interpretation paläolimnologischer Daten aus Sedimentkernen. Dies ist von besonderem Interesse, da der Lake Van als vielversprechender Ort für ein 'International Continental Drilling Project' (ICDP) ausgesucht wurde, um Klimaveränderung mit Hilfe von Sedimentkernen zu studieren. Darüber hinaus beabsichtigt die Gruppe für Umweltisotope an der ETH/EAWAG (Schweiz) Edelgase im Porenwasser von Lake Van - Sedimenten zu untersuchen. Das Ziel dieser Arbeiten ist eine Rekonstruktion der Mischungsbedingungen im Lake Van und der paläoklimatischen Bedingungen während des Holozäns (das Projekt ist eingereicht bei der Swiss Science Foundation SNF). Das Project MIXVAN wird eng mit der Gruppe für Umweltisotope an der ETH/EAWAG (Schweiz) zusammenarbeiten, die dem Projekt die Nutzung ihrer Labors zur Analyse von transienten Tracern ermöglicht.

1 2 3 4 541 42 43