API src

Found 1 results.

Designentwicklung und Modellierung für innovative Brennkammer-Auskleidungskonzepte, Teilprojekt im Verbundprojekt 'Entwicklung von Verbrennungstechniken im CEC für klimaschonende Energieerzeugung'^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung. Projekt 1B: Grundlagen (Entwicklung faseroptischer Messmethoden für den Einsatz im Clean Energy Center)^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung -Projekt 1J : Grundlagen (Untertitel : 'High Performance computing' von Gasturbinenverbrennungssystemen auf Hochleistungscomputer')^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung - Projekt 1C : Grundlagen: Thermoakustische Anpassung der Prüfstände im Clean Energy Center^Verbundprojekt zur Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Ernergieerzeugung - Projekt 1: Grundlagenprojekte^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung, Projekt 1E: Grundlagen: Virtueller Validierungsstandard zur Charakterisierung von Öl/Wasser Emulsionen^Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Energieerzeugung - Projekt 2F: Filmgekühlte Turbinenschaufel^CEC - Klimaschonende Verbrennungstechnologie^Entwicklung von Verbrennungstechniken im CEC für klimaschonende Energieerzeugung. Unterprojekt 1 H: Optimierung der Dämpfungseigenschaften keramischer Brennkammer-Auskleidungen^Im Teilprojekt 1F wird ein Verbrennungsmodell für die Verbrennung von flüssigen Brennstoffen und Flüssigbrennstoff/Wasser-Emulsionen entwickelt.^Siemens Clean Energy Center Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung 1.4 Entwicklung von Brennstoffdüsen für erweiterte Brennstoffflexibilität 1D Charakterisierung des Verbrennungssystems im Labormaß^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung; Teilprojekt 2D: Anwendung - Thermoakustische Anpassung der Prüfstande im Clean Energy Center^Verbundprojekt zur Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Energieerzeugung - Projekt 3A: Validierung^CEC 3B Phosphore II - Weiterentwicklung des Wandtemperaturmessverfahrens^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung Projekt 3C: Evolution der faseroptischen Messmethoden für den Einsatz im Clean Energy Centerr^Entwicklung von 'Layered-Structures' und 3D-Fertigungsverfahren, Projekt 3D Untersuchung von Simulationsmethoden zur Berechnung von Schadstoffemissionenn

Das Projekt "Designentwicklung und Modellierung für innovative Brennkammer-Auskleidungskonzepte, Teilprojekt im Verbundprojekt 'Entwicklung von Verbrennungstechniken im CEC für klimaschonende Energieerzeugung'^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung. Projekt 1B: Grundlagen (Entwicklung faseroptischer Messmethoden für den Einsatz im Clean Energy Center)^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung -Projekt 1J : Grundlagen (Untertitel : 'High Performance computing' von Gasturbinenverbrennungssystemen auf Hochleistungscomputer')^Entwicklung von Verbrennungstechnologien für die klimaschonende Ernergieerzeugung - Projekt 1C : Grundlagen: Thermoakustische Anpassung der Prüfstände im Clean Energy Center^Verbundprojekt zur Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Ernergieerzeugung - Projekt 1: Grundlagenprojekte^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung, Projekt 1E: Grundlagen: Virtueller Validierungsstandard zur Charakterisierung von Öl/Wasser Emulsionen^Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Energieerzeugung - Projekt 2F: Filmgekühlte Turbinenschaufel^CEC - Klimaschonende Verbrennungstechnologie^Entwicklung von Verbrennungstechniken im CEC für klimaschonende Energieerzeugung. Unterprojekt 1 H: Optimierung der Dämpfungseigenschaften keramischer Brennkammer-Auskleidungen^Im Teilprojekt 1F wird ein Verbrennungsmodell für die Verbrennung von flüssigen Brennstoffen und Flüssigbrennstoff/Wasser-Emulsionen entwickelt.^Siemens Clean Energy Center Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung 1.4 Entwicklung von Brennstoffdüsen für erweiterte Brennstoffflexibilität 1D Charakterisierung des Verbrennungssystems im Labormaß^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung; Teilprojekt 2D: Anwendung - Thermoakustische Anpassung der Prüfstande im Clean Energy Center^Verbundprojekt zur Entwicklung von Verbrennungstechnologien im CEC für die klimaschonende Energieerzeugung - Projekt 3A: Validierung^CEC 3B Phosphore II - Weiterentwicklung des Wandtemperaturmessverfahrens^Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung Projekt 3C: Evolution der faseroptischen Messmethoden für den Einsatz im Clean Energy Centerr^Entwicklung von 'Layered-Structures' und 3D-Fertigungsverfahren, Projekt 3D Untersuchung von Simulationsmethoden zur Berechnung von Schadstoffemissionenn" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Fluiddynamik.Ziel des Vorhabens ist die Untersuchung und Simulation der Schadstoffbildung in modernen Gasturbinenbrennkammern, unter Berücksichtigung nieder- und mittelfrequenter thermoakustischer Brennkammerschwingungen. Zuerst soll eine Literaturstudie durchgeführt werden, um existierende Modelle anhand verfügbarer Publikationen zu bewerten. Die geeignetsten Ansätze werden als Prototypen getestet. Ausgewählte Modelle werden in OpenFOAM implementiert. Im zweiten Schritt wird das verifizierte Simulationssystem für turbulente Verbrennung mit Schadstoffbildung auf einen realistischen Testfall angewendet. Derzeit ist als Testfall der Prototyp einer Siemens-Brennkammer vorgesehen, für den detaillierte Untersuchungen am Hochdruckbrennkammer-Versuchsstand der DLR Köln durchgeführt worden sind. Die Durchführung dieser Rechnungen erfordert Zeit auf einem Parallelrechner, die Siemens am Rechenzentrum Jülich einkaufen wird. Der Schwerpunkt der Simulationen liegt auf den Kohlenmonoxid-Emissionen bei reduzierter Last, der Stickoxidemission bei Höchstlast (base load), sowie der Thermoakustik zwischen zwei bis vier Can-Brennkammern. Die Simulationsergebnisse sollen anschließend im Detail analysiert und untersucht werden, um die Ursachen von Vorhersagefehlern einzugrenzen und sie spezifischen Modellannahmen zuzuordnen. Im dritten Schritt werden sogenannte PDF Methoden, welche die Verbundwahrscheinlichkeits-Dichtefunktion (PDF) der Spezieskonzentrationen transportieren und durch chemische Reaktionen modifizieren untersucht. Sie erlauben eine bessere Modellierung der Verbrennung in Bereichen wo die Flameletannahme überstrapaziert wird. Hierzu wird die Methode der 'Stochastic Fields' implementiert. Die erforderlichen Reaktionsmechanismen sollen durch systematische Reduktion und Optimierung detaillierter Modelle gewonnen werden. Die Implementierung soll an einem technischen System der Firma Siemens verifiziert werden. Das vierte Arbeitspaket widmet sich der Dokumentation und Berichterstattung.

1