API src

Found 3083 results.

Similar terms

s/verfahrensparamter/Verfahrensparameter/gi

Horizontale Variabilität von arktischem Meereis, Dynamik der Atmosphäre, Aerosol, Spurengasen und Strahlung auf der km-Skala zur Untersuchung der Interaktionsprozesse der Erdsystem-Kompartimente während der Schmelzsaison (HELiPOD4ArtofMelt)

Das Projekt HELiPOD4ArtofMelt hat als übergeordnete Ziele, zum Verständnis des Einflusses von Warmluft-Einbrüchen auf die arktische Atmosphäre beizutragen, und Prozesse und Wechselwirkungsmechanismen zu verstehen, die zum räumlich inhomogenen Einsetzen des Schmelzprozesses von arktischem Meereis führen. Die Methode besteht in der Analyse von fluggestützten Messdaten, die während der Expedition Art of Melt des schwedischen Eisbrechers Oden im atlantischen Einflussbereich des Arktischen Ozeans im Mai/Juni 2023 erhoben werden. Dafür kommt die Hubschrauber-Schleppsonde HELiPOD zum Einsatz mit einer Vielzahl an Sensoren, um die räumliche Verteilung der Eigenschaften von Meereis, atmosphärischer Dynamik, Aerosol, Spurengasen und Strahlungsbudget in einem Radius von 100 km um die Oden zu charakterisieren. Zusätzlich werden weitere komplementäre Sensoren der internationalen Teilnehmer der Oden-Expedition in HELiPOD integriert, z.B. Messungen der Isotopenverteilung von Wasserdampf, um Evaporationsprozesse zu untersuchen, Bestimmung der Eiskeime, um ein Bindeglied zu Wolkeneigenschaften herzustellen, Sensoren für die Konzentration von Kohlenstoffmonoxid und Ruß, sowie Filtermessungen für zusätzliche mikroskopische Analysen im Labor. Es sind lange Flugabschnitte in niedrigen Höhen (ca. 15-20 m) geplant, um die Austauschprozesse zwischen Ozean, Meereis und Atmosphäre zu untersuchen, sowie Vertikalprofile zur Messung der atmosphärischen Stabilität und der vertikalen Verteilung und Variabilität der Parameter. Der Datensatz an gleichzeitig erhobenen Messgrößen ermöglicht es, Zusammenhänge und Wechselwirkungen zu quantifizieren. So kann z.B. eine Fläche mit einem größeren Anteil an Schmelztümpeln direkt in Zusammenhang gebracht werden mit Veränderungen bei fühlbaren und latenten Wärmeflüssen, Veränderungen bei der Größenverteilung und Anzahlkonzentration von Aerosolpartikeln und Veränderungen der Energiebilanz auf kleinen räumlichen Skalen. Nach der finalen Aufbereitung des großen Datensatzes wird die räumliche Variabilität der verschiedenen Parameter untersucht, um ein dreidimensionales Bild auf einer Skala von unter 1 km bis 100 km zu erhalten. Bei den Analysen mit den internationalen Partnern steht die Charakterisierung von sogenannten „Atmosphärischen Flüssen“ im Vordergrund, also von Zirkulationsmustern, die warme und feuchte Luftmassen in den arktischen Polarwirbel transportieren. Die damit assoziierten Eigenschaften und Veränderungen der Grenzschicht, wie z.B. die Veränderung der Temperaturprofile und Wärmeflüsse, werden untersucht, die letztendlich zum Abschmelzen des Meereises beitragen. Außerdem werden die Prozesse und Wechselwirkungen untersucht, die zum räumlich und zeitlich inhomogenen Einsetzen des Schmelzens von Meereis führen, basierend auf den fluggestützten Messungen, den kontinuierlichen Messungen auf der Oden, und unter Berücksichtigung des Netzwerks an Observatorien in der Arktis, wie in Spitzbergen, Grönland und Nordskandinavien.

Entwicklung eines fernerkundungsbasierten Monitoringverfahrens auf Grundlage einer physiologisch fundierten Vitalitätsbewertung von Hauptbaumarten in Mischbeständen, Teilvorhaben 2: Vitalitätsdiagnostik mittels Biomarker

Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Waldbeständen, zu Baumarten, zu Folgereaktionen von Störungsereignissen wie z.B. Sturm, Kalamitäten, Da detaillierte Information häufig fehlen, sind die zahlreich verbreiteten Abschätzungen hierzu widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung seit mehreren Jahrzehnten bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten bzw. -gattungen und deren Zustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen u.a. belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Vor diesem Hintergrund soll mit dem aktuellen Forschungsvorhaben eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (Mecklenburg-Vorpommern) bietet dabei für FEMOPHYS einzigartige Möglichkeiten. Das Forschungsvorhaben verfolgt folgende Zielstellungen: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie z.B. Anfälligkeit für Insektenbefall und Dürre-Schäden ausgibt.

Entwicklung eines fernerkundungsbasierten Monitoringverfahrens auf Grundlage einer physiologisch fundierten Vitalitätsbewertung von Hauptbaumarten in Mischbeständen

Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Wäldern und Baumarten sowie deren Reaktionen auf Störungsereignisse wie Sturm oder Kalamitäten. Da detaillierte Informationen häufig fehlen, sind die verbreiteten Abschätzungen hierzu teils widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten und deren Vitalitätszustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Mit dem aktuellen Forschungsvorhaben soll eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (MV) bietet dabei für FeMoPhys einzigartige Möglichkeiten. Das Vorhaben verfolgt folgende Ziele: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie Anfälligkeit für Insektenbefall und Dürreschäden ausgibt. Dieser und weitere Indizes können kombiniert werden und so helfen, Risiken für Kaskadeneffekte und die Überschreitung von Kipppunkten abzuschätzen.

Entwicklung eines Verfahrensmodells zur Ableitung verfahrenstechnischer Parameter der HF-Erwärmung verschiedener, lignocelluloser Partikelleichtwerkstoffe (HF-PLWE)

Niederschlagsdaten Qualitätskontrolle mit Künstlicher Intelligenz, Teilvorhaben: Technische Hochschule Köln

Prozessintegrierte Abgasbehandlung bei der Reifenherstellung durch Nutzung von Einsatzströmen als Sorbenzien, Teilvorhaben TU Clausthal: 'Steigerung der Adsorptionskapazität der Adsorbentien durch Entwicklung und Optimierung der Verfahrenstechnik'

Ziel des Verbundvorhabens PARNES ist die Entwicklung eines Verfahren zur Nutzung von Füllstoffen der Reifenherstellung als Adsorbentien in einem neuen Verfahren der Abluftreinigung. Damit wäre eine produktionsintegrierte Nutzung der beladenen Materialien unter Einsparung von Erdgas und Strom der bisher notwendigen thermischen Abluftreinigung möglich. Aufgaben des CUTEC sind die experimentelle Entwicklung der Adsorption, besonders der Maximierung der Adsorptionskapazität der Materialien durch Optimierung verfahrenstechnischer Bedingungen, die messtechnische Begleitung der Versuche an der im Projekt durch Mixing Group in Freudenberg aufzubauenden Pilotanlage sowie die Mitarbeit bei der abschließenden ökonomischen und ökologischen Bewertung der konzeptionellen Modellanlage. Geplant ist, im AP 1 eine vorhandene Laboranlage in Kooperation mit ENVIROTEC auf Bewegtbett umzubauen, verschiedene Adsorbentien von Mixing Group zu testen, Verfahrensparameter zu variieren, Zusammenhänge zur Erzielung einer maximalen Beladung zu ermitteln und Bedürfnisse an das Adsorbens an Mixing Group zu übermitteln. Außerdem sollen Proben an Mixing Group für die Desorptionsversuche geliefert werden. Im AP 3 sollen dann die Ergebnisse der Parameterstudien der Laboranlage im Technikumsmaßstab verifiziert und optimiert werden. Dazu wird ein vorhandener Flugstromadsorber an einen Heißgaserzeuger (RTO oder TNV) und eine Lösemittelstation angeschlossen. Die Ergebnisse werden in Kooperation mit ENVIROTEC ausgewertet. Sie sollen für die Konzeption der Freudenberger Pilotanlage genutzt werden. In AP 5 werden die Versuche an selbiger messtechnisch begleitet. Zu nutzen ist nun die Ausstattung zu Emissionsmessungen in industriellen Abgasen und das langjährige Know how. In AP 6 werden dann Rechnungen zur CO2-Bilanzierung und die Unterstützung der ökonomischen Betrachtungen mit der dynamischen Wirtschaftlichkeitsbetrachtungen durchgeführt.

Energetische Nutzung biogener Reststoffe mit AER-Technologie

Ziel des Vorhabens der TBM Technologieplattform Bioenergie und Methan GmbH & Co. KG ist es, die wirtschaftliche und nachhaltige Erzeugung von elektrischer Energie und Wärme aus Biomasse mit Hilfe der neu entwickelten AER (Absorption Enhanced Reforming)-Vergasungstechnologie in einer Anlagengröße von 10 MW Brennstoffwärmeleistung zu demonstrieren. Das neue Verfahren wurde vom Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) entwickelt. Im Vergleich zu bereits existierenden Biomasseanlagen kommen ein neuartiges Bettmaterial und eine veränderte Betriebsweise zur Anwendung, bei der ein wasserstoffreiches Gas erzeugt wird. Das als Bettmaterial eingesetzte Kalziumoxid bewirkt, dass das entstehende Produktgas weniger unerwünschtes CO2 und Teer enthält. Geringere Vergasungstemperaturen erlauben außerdem den Einsatz von holzartigen Biomassereststoffen aus der Landschaftspflege. Dies trägt den hohen Anforderungen an den Standort in der Nähe des Biosphärenreservats Schwäbische Alb Rechnung. Das Produktgas soll in einem Gasmotor in elektrische Energie umgewandelt werden. Die Prozessabwärme soll zum einen in einem ORC-Prozess zur zusätzlichen Erzeugung elektrischer Energie dienen und zum anderen als Fernwärme abgegeben werden. Bei optimalem Betrieb und gleichzeitiger Wärmenutzung können insgesamt rund 26.000 Tonnen CO2 pro Jahr und Anlage eingespart werden.

Untersuchungen zur qualitativen und quantitativen Erfassung der emittierten Geruchsstoffe in Thermoholzprodukten unter Berücksichtigung der Feuchteaufnahme sowie zur Reduzierung der Emission durch technologische Maßnahmen

Die thermische Modifikation von Holz hat unter anderem das Ziel, seine Dauerhaftigkeit so zu erhöhen, dass es ohne zusätzlichen chemischen Holzschutz im Außenbereich verarbeitet werden kann. Durch die Wärmebehandlung wird das Holz in seinen chemischen, physikalischen, mechanischen und strukturellen Eigenschaften modifiziert. Die bei der thermischen Vergütung entstehenden Abbauprodukte sind zum derzeitigen Kenntnisstand noch ungenügend erforscht. Weiterhin sind problematische Geruchsstoffe der Produkte noch nicht erkannt, deren Emissionspotential bestimmt und keine technischen Möglichkeiten zur Eliminierung aufgezeigt. Durch die zunehmende Verwendung dieses Materials auch im Innenbereich verschärft sich die Frage, ob vom Thermoholz gesundheitliche Gefahren für den Menschen ausgehen.rnIm Rahmen eines DFG-Projektes in enger Kooperation mit dem Institut für Holz- und Pflanzenchemie der TU Dresden werden die während des Thermoprozesses abgebauten bzw. modifizierten flüchtigen oder durch Wasser und andere Lösungsmittel extrahierbaren Stoffe analysiert und ihre Bildungswege nachvollzogen. Besonderes Augenmerk gilt dabei Substanzen, von denen nachweislich gesundheitliche Gefahren für den Menschen ausgehen sowie solchen, die zu besonderen Eigenschaften des Thermoholzes wie Farbe, Wasseraufnahme-vermögen oder biologische Resistenz beitragen. Durch eine Veränderung und Weiterentwick-lung der Verfahrensparameter bei der Vergütung des Holzes sollen Rückschlüsse auf die während der thermischen Behandlung ablaufenden chemischen Prozesse gezogen sowie technische Möglichkeiten zur Eliminierung potentiell gesundheitsschädlicher bzw. geruchsintensiver Stoffe geprüft und entwickelt werden.

Reaktive Halogene in einer simulierten Vulkanfahne

Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.

Untersuchung der Laser-induzierten Plasmaausbildung im Wasser beim Doppelpuls-LIBS bei einem hydrostatischen Druck von 60 MPa (LIBS60)

Das Ziel des Forschungsvorhabens liegt in der grundlegenden Untersuchung der Kavitäts-/Plasmaausbildung und der Plasmastrahlung in einer Doppelpuls-LIBS-Anwendung an metallischen Proben unter Wasser bei einem Wasserdruck von bis zu 60 MPa. Zunächst ist hierfür die Laser-induzierte Kavität zu analysieren, um daraus Informationen über die Geometrie, Lebensdauer und die entstehende Schockwelle abzuleiten. Hierbei ist von besonderem Interesse, wie sich die wesentlichen Prozessparameter auf die Kavität auswirken und wie sich die Lebensdauer der Kavität steigern lässt. Des Weiteren sind Störquellen für die Kavitäts- bzw. Plasmaerzeugung von Interesse, wie das optische Durchbruchverhalten im Wasser in Abhängigkeit vom Wasserdruck. Weiterhin gilt es, die Voraussetzungen und die zeitlichen Perioden für die Emission von Linienstrahlung im Verhältnis zur Kontinuumstrahlung, herauszuarbeiten. Für die Elementanalyse durch LIBS ist die Untersuchung der Linienprofile von Interesse, hierbei insbesondere die Absorptions- und Verbreiterungsmechanismen eines Laser-induzierten Plasmas bei hohem Wasserdruck in Hinblick auf die Auswertbarkeit von Einzellinien. Mit diesem Wissen sollen Schlussfolgerungen auf die erforderliche Technik, geeignete Auswertemethoden und die erreichbare Genauigkeit für LIBS in der Tiefsee gezogen werden.

1 2 3 4 5307 308 309