Im Rahmen der Abgasentgiftung heutiger Kraftfahrzeugmotoren wurde ein Otto/Diesel-Hybridmotor mit vergleichsweise geringer Schadstoffemission entwickelt. Die Berechnung der Waermeentwicklung im Motor und die Analyse von Gasproben aus der Verbrennungszone ermoeglichten einen Einblick in die Zusammenhaenge zwischen Energieumsatz und Schadstoffbildung. Die gute Abgasqualitaet des Verfahrens wird durch eine zweistufige Verbrennung in Verbindung mit einer Kombination aus Ladungsschichtung und Fremdzuendung hervorgerufen. Ausserdem kann durch Massnahmen wie Ansaugluftdrosselung, Wassereinspritzung, Abgasrueckfuehrung und katalytische Abgasreinigung das Abgas zusaetzlich entscheidend verbessert werden. Das Verfahren besitzt eine weitgehende Oktanzahlunempfindlichkeit, so dass darueberhinaus durch eine geeignete Kraftstoffauswahl eine Abgasentgiftung moeglich wird. Straigt-Run-Benzin ist dabei ein besonders attraktiver Kraftstoff, da bei seiner Verbrennung wesentlich weniger (50 v.H.) unverbrannte bzw. teiloxidierte Kohlenwasserstoffe im Abgas enthalten sind und aufgrund seines niedrigeren Aromatengehaltes auch die Emission kanzerogener Kohlenwasserstoffe stark verringert sein duerfte. Ausserdem ist es gegenueber Superbenzin wegen der einfacheren Herstellung und der besseren Rohoelausnutzung wesentlich preisguenstiger. Als naechstes Ziel wird durch Verbesserung der Gemischaufbereitung und durch Steuerung des Verbrennungsablaufs fuer den Betrieb mit Straight-Run-Benzin eine weitere Absenkung der Schadstoffemission, insbesondere der Emission kanzerogener Kohlenwasserstoffe, angestrebt.
Ziel der Forschung ist es, naehere Erkenntnisse ueber die reaktionskinetischen Ablaeufe im Brennraum eines Modelldieselmotors zu erlangen. Dazu wird durch am Einheitstriebwerk, das im Verbrennungsablauf mit der Dieselverbrennung zu vergleichen ist, die Reaktion zu einem vorwaehlbaren Zeitpunkt abgestoppt und das zum 'Einfrier'-Zeitpunkt vorliegende Brenngas mit GC-Analyse untersucht. Die einflussnehmenden Parameter wie Brenndauer, Zylinderwandtemperatur, Einspritzzeitpunkt, Einspritzmenge, Verdichtungsverhaeltnis, Gemischaufbereitung, Zuendzeitpunkt etc. koennen in weiten Bereichen variiert werden.
Im Zuge der Energiewende werden an Hochtemperaturprozesse erhöhte Anforderungen bezüglich der Last und Brennstoffflexibilität sowie der CO2-Minderung gestellt. Ein großes Potenzial liegt im Design der für diese Prozesse kritischen Prozesszonen (Flammenzonen), in denen die höchsten Energiedichten auftreten. Auf Grund der extremen Prozessbedingungen, die einen messtechnischen Zugang meistens verwehren, ist die Kenntnislage hier noch sehr gering. Der Antragsteller hat frühzeitig begonnen, für die Hochdruck-Erdgasspaltung den technikumstauglichen Prototyp für ein optisches Diagnosesystem zur Analyse und Optimierung des Brenners und des Gesamtprozesses zu entwickeln. Im Ergebnis der optischen Flammendiagnostik wurde ein neuer 3D-Brenner mit einer um den Faktor 3 höheren spezifischen Leistung entwickelt. Hier setzt OptoVirT an. Zusammen mit der Firma TAF soll auf dieser Basis ein industrietaugliches, optisches Diagnosesystem für Hochtemperaturprozesse speziell für Vergasungsreaktoren und Kraftwerkskessel entwickelt werden. Die damit mögliche Flammenanalyse soll zur Aufklärung des realen Strömungsfeldes beitragen. Erstmals können wissensbasierte Lösungen für neue bzw. optimierte Brenner und Reaktoren für die Anforderungen der Energiewende 'on demand' bereitgestellt werden. Diese Lösungen ermöglichen dem deutschen Anlagenbau und den Betreibern optimierte und energieeffiziente, CO2-arme Technologien einzusetzen und flexibler am Energie- und Rohstoffmarkt zu agieren. In Zusammenarbeit mit der TAF sollen in den ersten beiden Jahren verschiedene, modular aufgebaute optische Sonden für Kohle-, Öl- und Gassysteme entwickelt und anschließend im Technikumsmaßstab erprobt werden. Dabei sind Versuche an Versuchsständen bzw. -anlagen bei den Antragsstellern geplant. Danach wird der Praxistest der Sonden in Industrieanlagen im Vordergrund stehen. Die Entwicklung der optischen Sonden erfolgt CFD-gestützt, um vorab gezielte Aussagen zu thermischen Belastungen treffen zu können.