The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.
Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.
Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.
Biodiversity in Europe is strongly affected by atmospheric nitrogen and sulfur deposition to ecosystems. Within the PINETI-4 (Pollutant Input and Ecosystem Impact) project the deposition of nitrogen and sulfur compounds across Germany was quantified for the years 2000, 2005, 2010 and 2015 to 2019, using the atmospheric chemical transport model LOTOS-EUROS and precipitation composition measurements. Model improvements lead to better evaluation scores in comparison to observations compared to the previous PINETI-3 report. While nitrogen deposition has been decreasing in the last decades, the results show that in 2019 critical loads for eutrophication were still exceeded for nearly 70 % of ecosystems. Veröffentlicht in Texte | 130/2024.
Spurenelemente in sedimentären Abfolgen können sowohl positive als auch negative Aspekte haben. Positive Aspekte haben Spurenelements, weil (1) ihre Konzentrationsmuster als Proxies für die Rekonstruktion der Umweltbedingungen zum Zeitpunkt der Ablagerung verwendet werden können, (2) sie Informationen über diagenetische Prozesse liefern können und (3) sie abgebaut werden können, um den strategischen Mineralbedarf zu decken. Andererseits können sie aufgrund der Wasser-Gestein-Wechselwirkung in das Grundwasser gelangen, wo sie sich nachteilig auf die betrieblichen und gesundheitlichen Aspekte dieser kritischen Ressource auswirken. Wir wissen erstaunlich wenig über die beiden Spurenelemente As und Mo in karbonatischen Sedimenten. Dies erscheint überraschend, da Karbonate zu den am häufigsten vorkommenden Sedimentgesteinstypen gehören und As und Mo Elemente von erheblichem ökologischen und wissenschaftlichen Interesse sind. Um unser Verständnis zu verbessern, wird das übergeordnete Ziel der vorgeschlagenen Studie sein, die diagenetische Geschichte und die damit einhergehende Umverteilung von As und Mo in der Karbonatmatrix eines Grundwasserleiters zu entschlüsseln. Die Kombination dieser Informationen mit detaillierten mineralogischen Beobachtungen wird gekoppelte chemische Transportmodelle verbessern und dabei helfen, Bereiche, Regionen und Zeitalter potenzieller Kontaminationen zu identifizieren, was die Suche nach sicherem Trinkwasser unterstützen wird. Ein Prozessverständnis der diagenetischen Umverteilung von Mo und seinen Isotopen wird es ermöglichen Mo isotope als Werkzeug für die Rekonstruktion von Paläobedingungen während der Ablagerung von Karbonaten zu nutzen. Somit wird es die Möglichkeit der Paläorekonstruktion, in anderen marinen Umgebungen als euxinischen Becken, geben.
Die Westantarktis ist eine der Regionen der Erde, die am sensibelsten auf den aktuellen Klimawandel reagiert. Ein Zusammenbruch dieses Eisschildes in einem wärmeren Klima würde dramatische Folgen für den globalen Meeresspiegelanstieg haben. Dabei spielt nicht nur der Anstieg der globalen Mitteltemperatur eine Rolle, sondern in gleichem Maße auch Veränderungen der Klimavariabilität. Diese Veränderungen können das labile westantarktische System an Kipppunkte bringen, die wiederum zu unwiderruflichen eisdynamischen Prozessen führen. Um diese zum Teil abrupten Veränderungen in Zukunft besser einschätzen zu können, müssen diesbezügliche Modellprojektionen auf einer soliden Datenbasis stehen. Paläoklimatische Zeitreihen, in diesem Fall aus Eisbohrkernen, bieten solch eine Datengrundlage. Besonders interessant sind hierbei Zeitreihen, die zurückreichen in das letzte Glazial, oder idealerweise in die davorliegende letzte natürliche Warmzeit (ca. 110 000 - 130 000 Jahre vor heute). Solche langen Zeitreihen aus der Westantarktis sind allerdings bisher nur spärlich vorhanden. Im Rahmen des WACSWAIN Projekts (WArm Climate Stability of the West-Antarctic Ice sheet in the last iNterglacial) wurde kürzlich ein neuer Eiskern auf Skytrain Ice Rise gebohrt, der einen Zeitraum bis 126 000 Jahre vor heute abdeckt. Umfassende kontinuierliche Datensätze der stabilen Wasserisotope, der chemischen Spurenstoffe und der physikalischen Parameter wurden im Rahmen von WACSWAIN erhoben und stehen nun für weitere Analysen zur Verfügung. Außerdem wurden zum ersten Mal parallel zu den kontinuierlichen Messungen ausschnittweise Abschnitte des Kerns mit der ultra-hochauflösenden Methode der Laser Ablation (LA-ICP-MS) auf ihren Spurenstoffgehalt untersucht. Dies erlaubt die Analyse von Veränderungen in bisher nicht verfügbarer Detailliertheit. Das Ziel des hier vorgestellten Projektes ist es diese hochaufgelösten Signale zusammen mit den kontinuierlichen zu nutzen, um die Veränderungen der Klimavariabilität in dieser Region der Westantarktis in beispielloser Genauigkeit für den letzten glazialen Zyklus statistisch zu analysieren. Ein besonderer Fokus wird dabei auf Phasen mit abrupten Änderungen in den Temperatur- und Eisbedeckungsproxies, wie zum Beispiel einem signifikanten Anstieg der marinen Ionenkonzentration und der Wasserisotope im frühen Holozän, liegen. Die statistischen Analysen der vergangenen Klimavariabilität (Varianz, Amplitude, Skalierungsfaktoren) werden im Folgenden genutzt, um die aktuell zu beobachtenden Veränderungen in der Westantarktis besser verstehen zu können. Dies wird zusätzlich unterstützt durch das Testen der wissenschaftlichen Hypothesen über die Ursachen der Veränderungen mittels spezifischer, isotopengetriebener globaler Zirkulationsmodelle, sowie chemischer Transportmodelle atmosphärischer Spurenstoffe. Dieses Projekt wird somit einen wichtigen Beitrag zum Verständnis der westantarktischen Klimasystems in der Vergangenheit und Zukunft leisten.
Origin | Count |
---|---|
Bund | 158 |
Kommune | 4 |
Land | 37 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 126 |
Messwerte | 1 |
Strukturierter Datensatz | 1 |
Text | 17 |
Umweltprüfung | 16 |
unbekannt | 34 |
License | Count |
---|---|
geschlossen | 53 |
offen | 135 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 96 |
Englisch | 119 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 2 |
Dokument | 10 |
Keine | 120 |
Webdienst | 4 |
Webseite | 64 |
Topic | Count |
---|---|
Boden | 162 |
Lebewesen & Lebensräume | 164 |
Luft | 155 |
Mensch & Umwelt | 194 |
Wasser | 149 |
Weitere | 185 |