Das Projekt "Redox processes along gradients" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Forschungsstation.The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.
Das Projekt "Arsen und Molybdän in marinen Karbonaten: Umverteilung, Bindungsformen und Isotopen Systematik" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Spurenelemente in sedimentären Abfolgen können sowohl positive als auch negative Aspekte haben. Positive Aspekte haben Spurenelements, weil (1) ihre Konzentrationsmuster als Proxies für die Rekonstruktion der Umweltbedingungen zum Zeitpunkt der Ablagerung verwendet werden können, (2) sie Informationen über diagenetische Prozesse liefern können und (3) sie abgebaut werden können, um den strategischen Mineralbedarf zu decken. Andererseits können sie aufgrund der Wasser-Gestein-Wechselwirkung in das Grundwasser gelangen, wo sie sich nachteilig auf die betrieblichen und gesundheitlichen Aspekte dieser kritischen Ressource auswirken. Wir wissen erstaunlich wenig über die beiden Spurenelemente As und Mo in karbonatischen Sedimenten. Dies erscheint überraschend, da Karbonate zu den am häufigsten vorkommenden Sedimentgesteinstypen gehören und As und Mo Elemente von erheblichem ökologischen und wissenschaftlichen Interesse sind. Um unser Verständnis zu verbessern, wird das übergeordnete Ziel der vorgeschlagenen Studie sein, die diagenetische Geschichte und die damit einhergehende Umverteilung von As und Mo in der Karbonatmatrix eines Grundwasserleiters zu entschlüsseln. Die Kombination dieser Informationen mit detaillierten mineralogischen Beobachtungen wird gekoppelte chemische Transportmodelle verbessern und dabei helfen, Bereiche, Regionen und Zeitalter potenzieller Kontaminationen zu identifizieren, was die Suche nach sicherem Trinkwasser unterstützen wird. Ein Prozessverständnis der diagenetischen Umverteilung von Mo und seinen Isotopen wird es ermöglichen Mo isotope als Werkzeug für die Rekonstruktion von Paläobedingungen während der Ablagerung von Karbonaten zu nutzen. Somit wird es die Möglichkeit der Paläorekonstruktion, in anderen marinen Umgebungen als euxinischen Becken, geben.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Untersuchungen von Änderungen der Klimavariabilität während der letzten 130 000 Jahre basierend auf einem Eisbohrkern von Skytrain Ice Rise, Westantarktis (CliVarSky130)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Westantarktis ist eine der Regionen der Erde, die am sensibelsten auf den aktuellen Klimawandel reagiert. Ein Zusammenbruch dieses Eisschildes in einem wärmeren Klima würde dramatische Folgen für den globalen Meeresspiegelanstieg haben. Dabei spielt nicht nur der Anstieg der globalen Mitteltemperatur eine Rolle, sondern in gleichem Maße auch Veränderungen der Klimavariabilität. Diese Veränderungen können das labile westantarktische System an Kipppunkte bringen, die wiederum zu unwiderruflichen eisdynamischen Prozessen führen. Um diese zum Teil abrupten Veränderungen in Zukunft besser einschätzen zu können, müssen diesbezügliche Modellprojektionen auf einer soliden Datenbasis stehen. Paläoklimatische Zeitreihen, in diesem Fall aus Eisbohrkernen, bieten solch eine Datengrundlage. Besonders interessant sind hierbei Zeitreihen, die zurückreichen in das letzte Glazial, oder idealerweise in die davorliegende letzte natürliche Warmzeit (ca. 110 000 - 130 000 Jahre vor heute). Solche langen Zeitreihen aus der Westantarktis sind allerdings bisher nur spärlich vorhanden. Im Rahmen des WACSWAIN Projekts (WArm Climate Stability of the West-Antarctic Ice sheet in the last iNterglacial) wurde kürzlich ein neuer Eiskern auf Skytrain Ice Rise gebohrt, der einen Zeitraum bis 126 000 Jahre vor heute abdeckt. Umfassende kontinuierliche Datensätze der stabilen Wasserisotope, der chemischen Spurenstoffe und der physikalischen Parameter wurden im Rahmen von WACSWAIN erhoben und stehen nun für weitere Analysen zur Verfügung. Außerdem wurden zum ersten Mal parallel zu den kontinuierlichen Messungen ausschnittweise Abschnitte des Kerns mit der ultra-hochauflösenden Methode der Laser Ablation (LA-ICP-MS) auf ihren Spurenstoffgehalt untersucht. Dies erlaubt die Analyse von Veränderungen in bisher nicht verfügbarer Detailliertheit. Das Ziel des hier vorgestellten Projektes ist es diese hochaufgelösten Signale zusammen mit den kontinuierlichen zu nutzen, um die Veränderungen der Klimavariabilität in dieser Region der Westantarktis in beispielloser Genauigkeit für den letzten glazialen Zyklus statistisch zu analysieren. Ein besonderer Fokus wird dabei auf Phasen mit abrupten Änderungen in den Temperatur- und Eisbedeckungsproxies, wie zum Beispiel einem signifikanten Anstieg der marinen Ionenkonzentration und der Wasserisotope im frühen Holozän, liegen. Die statistischen Analysen der vergangenen Klimavariabilität (Varianz, Amplitude, Skalierungsfaktoren) werden im Folgenden genutzt, um die aktuell zu beobachtenden Veränderungen in der Westantarktis besser verstehen zu können. Dies wird zusätzlich unterstützt durch das Testen der wissenschaftlichen Hypothesen über die Ursachen der Veränderungen mittels spezifischer, isotopengetriebener globaler Zirkulationsmodelle, sowie chemischer Transportmodelle atmosphärischer Spurenstoffe. Dieses Projekt wird somit einen wichtigen Beitrag zum Verständnis der westantarktischen Klimasystems in der Vergangenheit und Zukunft leisten.
Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), HALO 2020 – Wolkeneinfluss auf solare aktinische Strahlung: Bewertung satelliten-unterstützter Strahlungstransportrechnungen mit HALO Messungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.In diesem Projekt sollen gemessene spektrale aktinische UV/VIS-Strahlungsflussdichten von sechs HALO-Missionen verwendet werden, um Strahlungstransportmodell-Vorhersagen zu überprüfen, die auf der Grundlage von Wolkeneigenschaften aus Satellitenbeobachtungen durchgeführt werden. Fünf der HALO-Missionen wurden bereits durchgeführt: TECHNO (2010), NARVAL-I (2014), OMO (2015), EMERGE (2017/2018) und CAFE-Africa (2018), mit einer Gesamtzahl von etwa 75 Forschungsflügen. Zudem sollen die Daten von CAFE-Brazil (2020) in die Auswertung einfließen. Der Hauptzweck der Messungen der aktinischen Strahlungsflussdichten ist die anschließende Berechnung von Photolysefrequenzen, die wichtige Größen in der Photochemie darstellen. Die HALO-Messungen bieten eine seltene Gelegenheit satelliten-gestützte Strahlungstransportmodell-Vorhersagen von Photolysefrequenzen zu überprüfen, da sie hochaufgelöste Stichproben aus verschiedenen Höhen und global verteilten Einsatzgebieten liefern. Zudem wurden während TECHNO, NARVAL und OMO durch einen Missionspartner spektrale Strahldichtemessungen in Nadir-Richtung durchgeführt. Diese Messungen umfassen den gesamten solaren Spektralbereich und bieten daher unabhängige lokale Informationen über Wolken unter dem Flugzeug, was die Interpretation und korrekte Anwendung der verfügbaren Wolkeneigenschaften erleichtern wird. Das Hauptziel des Projektes ist es herauszufinden, ob gemessene und durch ein Strahlungstransportmodell vorhergesagte Photolysefrequenzen durch den Einsatz der Satellitendaten in akzeptable Übereinstimmung gebracht werden können. Sollte dies gelingen, dann könnten auf der Grundlage satellitengestützter Wolkeninformationen nutzer-definierte 3D Felder von Photolysefrequenzen berechnet werden. Diese Felder können genutzt werden, um Vorhersagen von Chemie-Transportmodellen zu überprüfen, oder sie können in zukünftigen Anwendungen direkt in diese Modelle einfließen. Eine entsprechende Fallstudie soll im Rahmen dieses Projektes durchgeführt werden. Davon würden auch zukünftige HALO-Missionen und deren wissenschaftliche Interpretationen profitieren.
Das Projekt "Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre, Teilvorhaben 1: Verkehrsmodelle für die strategische Planung multimodaler Verkehre" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Straßen- und Verkehrswesen, Lehrstuhl für Verkehrsplanung und Verkehrsleittechnik.
Das Projekt "AsFeP0 - A model concept for in situ investigation or arsenic and phosphate adsorption to predefined iron minerals and to characterize transformation processes of iron minerals" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Abteilung Wasserressourcen und Trinkwasser.Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.
Planungsphase Die 1958 errichtete Sellheimbrücke befindet sich im Berliner Bezirk Pankow, Stadtteil Weißensee. Die Brücke überspannt im Zuge der wichtigen Straßenverbindung des Karower Damms und der Blankenburger Chaussee die Gleisanlagen der Deutschen Bahn. Es handelt sich hierbei um den Berliner Außenring (BAR), welcher im Bereich der Sellheimbrücke zweigleisig geführt und als Fernbahn mit einer Oberleitungsanlage elektrifiziert ausgebaut ist. Nordwestlich der Brücke befindet sich das Karower Kreuz. Die Sellheimbrücke wird vom Fuß- und Radverkehr sowie vom motorisierten Individualverkehr genutzt. Die ÖPNV-Anbindung von Berlin-Karow erfolgt mittels Buslinien über den Karower Damm / Blankenburger Chaussee und die Sellheimbrücke. Die Baumaßnahme wird unter Aufrechterhaltung des Geh- und Radverkehrs sowie unter weitgehend zweistreifiger bauzeitlicher Verkehrsführung für ÖPNV und Kfz umgesetzt. In der brückennahen Umgebung des Karower Damms und der Blankenburger Chaussee liegen Gebiete mit Einfamilienhäusern, Grün- und Verkehrsflächen sowie als Betriebsflächen ausgewiesene Brachen. Die geplante Infrastrukturmaßnahme i2030 zur Verlängerung der S75 von Wartenberg zum Karower Kreuz mit der Verkehrsstation Sellheimbrücke wird im Projekt berücksichtigt. Der Ersatzneubau der Sellheimbrücke umfasst neben dem Brückenbauwerk auch die Rampenbereiche, welche bis zu den angrenzenden Kreuzungen reichen. Der südliche Rampenbereich wird von der Blankenburger Laakebrücke gequert. Die Blankenburger Laakebrücke wird im Rahmen des Projektes mit ersatzneugebaut. Infolge umfangreicher Abhängigkeiten zwischen Ersatzneubau sowie der Erneuerung der Straßenrampen in Verbindung mit den Gleisanlagen der Deutschen Bahn ergeben sich komplexe Randbedingungen, welche während der Bauzeit die Herstellung, Konstruktionsausbildung und bauzeitliche Verkehrsführung beeinflussen. Das Vorhaben Der Bau Verkehrsführung Zahlen und Daten Bei den nach DIN 1076 durchgeführten Bauwerksprüfungen wurden bei der Sellheimbrücke erhebliche Schäden festgestellt, welche die Tragfähigkeit und die Verkehrssicherheit beeinträchtigen. Die aktuell durchgeführten Brückenprüfungen ergaben die Zustandsnote 3,0. Nach den Richtlinien für die Erhaltung von Ingenieurbauten (RI-EBW-PRÜF) bedeutet dies, dass sich das Bauwerk in einem „kritischen Bauwerkszustand“ befindet. Die Schäden umfassen den Fahrbahnbelag sowie Risse und Betonabplatzungen an den Widerlagern und den Flügelwänden der Brücke. Weiterhin ist der teilweise freiliegende Betonstahl angegriffen und korrodiert. Im Rahmen der Wahrnehmung der Verkehrssicherungspflicht und zur Aufrechterhaltung der Infrastruktur ist ein Ersatzneubau unabdingbar erforderlich. Sellheimbrücke Der Ersatzneubau der Sellheimbrücke wird an gleicher Stelle des Bestandsbauwerks errichtet. Bei den Planungen der Brückenkonstruktion werden die umfangreichen und komplexen Nutzungsanforderungen, u.a. Querschnittsausbildung der Straßenverkehrsanlage unter Berücksichtigung des Mobilitätsgesetzes, Berücksichtigung Infrastrukturmaßnahme i2030, Anbindung des geplanten Haltepunktes der S-Bahn und der damit verbundenen Haltestellen zur ÖPNV-Anbindung, Umsetzung von Auflagen aus den wasserrechtlichen und umweltrechtlichen Gesichtspunkten, berücksichtigt. Die neue Brücke wird mit einem Überbau als schiefwinklige Einfeldverbundplatte mit einem offenen Verbundquerschnitt geplant. Die Endquerträger werden als Stahlbetonträger ausgebildet. Die Unterbauten werden als flachgegründete Stahlbetonkastenwiderlager vorgesehen. Hergestellt wird der Ersatzneubau in zwei Bauhauptabschnitten durch halbseitiges Bauen, d.h. nach Rückbau der ersten Brückenhälfte erfolgt deren Ersatzneubau. Nach Abbruch und Ersatzneubau der zweiten Brückenhälfte erfolgt der kraftschlüssige Verbund der Fahrbahnplatte. Im Zuge des Ersatzneubaus wird der bauzeitliche Straßenverkehr über die verbliebene Hälfte der Bestandsbrücke geführt. Anschließend wird der Straßenverkehr in analoger Weise unter Nutzung der neuen ersten Hälfte der Sellheimbrücke gelenkt. Blankenburger Laakebrücke Im Zuge der Planungen ergab sich, dass sich das Planungsgebiet über die Laake hinaus erstrecken muss. Die Sellheimbrücke und die Blankenburger Laakebrücke liegen im selben Straßendamm und sind beide angeschlossen bzw. eingebettet in dieselben Stützbauwerke zur Abfangung des Straßendammes. Bei der Blankenburger Laakebrücke handelt es sich um ein überschüttetes Bauwerk über die Laake. Aufgrund der engen technischen und logistischen Abhängigkeiten zwischen beiden Brückenbauwerken erfolgt gleichzeitig die Planung zum Ersatzneubau der Blankenburger Laakebrücke. Insbesondere aus statisch-konstruktiven Gründen, u.a. aufgrund der zusätzlichen Belastung aus höherer Überschüttung (Erdauflast) und Verkehrslast, ist ein Ersatzneubau der Blankenburger Laakebrücke geplant. Die neue Blankenburger Laakebrücke wird als Zweigelenkrahmen mit einem Riegel als Stahlbetonplatte und Widerlagerwänden als Spundwandkonstruktionen ausgebildet. Verkehrswege Der Karower Damm / Blankenburger Chaussee ist die wichtigste Straßenanbindung für Berlin-Karow. Die Sellheimbrücke wird aktuell vom Fuß-, Rad- und vom motorisierten Individualverkehr genutzt. Die ÖPNV-Anbindung von Karow erfolgt mittels Buslinien über den Karower Damm / Blankenburger Chaussee und die Sellheimbrücke. Nach den Richtlinien für die integrierte Netzgestaltung (RIN 2008) werden der Karower Damm und die Blankenburger Chaussee in die Kategoriengruppe VS II, d.h. anbaufreie Hauptverkehrsstraße mit übergeordneter Verbindungsfunktion, kategorisiert. Im Verkehrsmodell 2030 werden die Infrastrukturmaßnahmen des Stadtentwicklungsplans Mobilität und Verkehr Berlin 2030 (StEP MoVe) zzgl. der ÖPNV-Maßnahmen aus dem gültigen Nahverkehrsplan berücksichtigt. Die Gesamtmaßnahme erstreckt sich ab der Einmündung zur Straße 39 und verläuft über die Blankenburger Chaussee, die Sellheimbrücke und den Karower Damm einschließlich der Blankenburger Laakebrücke bis zur Einmündung zur Treseburger Straße. Insgesamt beläuft sich die Baulänge des Streckenabschnittes auf ca. 550 m. Die neuen Rampenbereiche werden an den Kreuzungen höhengleich angeschlossen. Begrenzt werden der Karower Damm und die Blankenburger Chaussee durch parallel verlaufende Erschließungsstraßen. Die beiden westlichen Erschließungsstraßen sind ebenfalls Bestandteil der Planung zur Gesamtmaßnahme. Zur Schaffung einer attraktiven Umsteigebeziehung des ÖPNV werden jeweils eine Bushaltestelle direkt vor bzw. hinter der Sellheimbrücke positioniert. Im unmittelbaren Anschlussbereich der Sellheimbrücke wird je Quadrant jeweils eine Fußgängertreppe zur Anbindung der Erschließungsstraßen vorgesehen. Behelfsbrücke für Fuß- und Radverkehr während der Bauzeit Während der Bauphase wird der Straßenverkehr über den halben Bestandsüberbau bzw. den neu errichteten halben Überbau geführt. Infolgedessen ist kein ausreichender Platz für den Fuß- und Radverkehr vorhanden. Der bauzeitliche Rad- und Fußgängerverkehr wird über eine Behelfsbrücken-Rampenkonstruktion westlich der Sellheimbrücke vorbeigeführt. Dabei überspannt diese als flach gegründete Konstruktion sowohl das Gewässer Laake als auch die Gleisanlagen der Deutschen Bahn. Die Behelfsbrückenkonstruktion wird barrierefrei hergestellt. Kreuzungspartner Basierend auf den vorliegenden Planungsergebnissen werden gleichzeitig mit der fortlaufenden Planung und Vorbereitung des Projekts die kreuzungsrechtlichen Abstimmungen durchgeführt sowie die erforderliche Kreuzungsvereinbarung zwischen den beteiligten Parteien, dem Land Berlin und der Deutschen Bahn, aufgestellt und abgeschlossen. Leitungsverwaltungen Im Rahmen der Gesamtmaßnahme werden im Zuge des Karower Damms / Blankenburger Chaussee Leitungen, unter anderem der Berliner Wasserbetriebe, Stromnetz Berlin GmbH, 1&1 AG, neu verlegt. Als Voraussetzung für den Baubeginn der Gesamtmaßnahme haben im Jahr 2024 vorbereitende Leistungen der Leitungsbetriebe, unter anderem Stromnetz Berlin GmbH, Deutsche Telekom AG, begonnen. Zur Schaffung der Baufreiheit für den Einbau der zukünftigen Stützwände werden weitere Versorgungsleitungen umverlegt. Die Berliner Wasserbetriebe (BWB) werden Trinkwasserleitungen und die Netzgesellschaft Berlin-Brandenburg (NBB) Gasleitungen in die neue Endlage umverlegen. Die Arbeiten finden ab dem II. Quartal 2025 bis voraussichtlich IV. Quartal 2025 in den trassenparallelen Erschließungsstraßen Blankenburger Chaussee / Straße 39 nördlich der Sellheimbrücke und Bahnanlagen sowie Karower Damm / Treseburger Straße bzw. Straße 27 südlich der Sellheimbrücke statt. In der Bauphase 5 (voraussichtlich im Jahr 2031) erfolgen im Rahmen der Erneuerung der Erschließungsstraßen die abschließenden Arbeiten der Leitungsbetriebe, unter anderem Berliner Wasserbetriebe, Stromnetz Berlin GmbH, Netzgesellschaft Berlin-Brandenburg (NBB). Umwelt und Naturschutz In unmittelbarer Nähe befinden sich Biotope mit hohem Konfliktpotenzial sowie geschützte Biotope. Nördlich der Sellheimbrücke verläuft die Grenze eines FFH-Gebietes mit Staudenfluren und -säumen. Es werden umfassende Untersuchungen und Bewertungen der Auswirkungen auf Natur und Umwelt durchgeführt. Basierend darauf werden Eingriffs-, Ausgleichs- und Ersatzmaßnahmen geplant. Nach Genehmigung werden diese Maßnahmen umgesetzt. Projektraum Blankenburg und Karow Im Rahmen des Planungsprozesses erfolgen Abstimmungen mit tangierenden Planungs- und Baumaßnahmen. Unter anderem erfolgen regelmäßige Besprechungs- und Informationsgespräche mit der Maßnahme für neue Stadtquartiere in Karow Süd, dem „Projektverbund Karow Süd“. Weiterführende Informationen zu dieser Maßnahme sind über den folgenden Link verfügbar: Projektverbund Karow Süd Voraussichtliche Bauzeit: Mitte 2026 bis 2031 Die Angaben zur Bauausführung werden in der weiteren Planung und Projektvorbereitung konkretisiert. Entsprechend können weitere Angaben zum Baubeginn der Hauptbauleistungen erst im Zuge der weiteren Planungen sowie den Abstimmungs- und Genehmigungsprozessen erfolgen. Infolge der umfangreichen Abhängigkeiten und zu beachtenden Randbedingungen wird für die Hauptbauleistungen des Karower Damms / Blankenburger Chaussee aktuell von einer Bauzeit von ca. 4,5 Jahren ausgegangen. Die Bauzeit berücksichtigt das Bauen in diversen Bauphasen, um die notwendigen Verkehrsbeziehungen weitestgehend aufrecht erhalten zu können. Ab dem zweiten Halbjahr 2024 erfolgen in Teilbereichen vorab notwendige Umverlegungsarbeiten von Leitungen. Folgende Bauphasen sind vorgesehen: Bauphase 0 (2024 bis Mitte 2026) Leitungsumverlegungen in den Erschließungsstraßen durch die zuständigen Leitungsverwaltungen einschließlich dafür zwingende begrenzte Baufeldfreimachungen (begonnen 2. Halbjahr 2024 / Fortführung in 2025) Baufeldfreimachung, u.a. Baumfällungen (Ende 2025 / Anfang 2026) Errichtung der Behelfsbrücke für Fuß- und Radverkehr während der Bauzeit Errichtung der Behelfsbrücke in der südwestlichen Erschließungsstraße über der Blankenburger Laake Bauphase 1 schrittweiser Einbau der Stützwände West und Ost einschließlich Rückverankerung Einbau bauzeitlicher Hilfskonstruktionen, u.a. Mittellängsverbau einschließlich Rückverankerung Herstellung und Umbau der provisorischen Fahrbahnen für die bauzeitliche Verkehrsführung in Abhängigkeit des Einbaus der Stützwände Bauphase 2 Abbruch und Ersatzneubau der östlichen Brückenhälfte der Sellheimbrücke Beginn Ersatzneubau der Blankenburger Laakebrücke Herstellung der östlichen Rampenbereiche mit Straßenbau für die Fahrbahn und den Geh- und Radweg einschließlich der bauzeitlichen Provisorien für die Bauphase 3 Beginn der Leistungen zur Straßenentwässerung des Karower Damms / Blankenburger Chaussee Leitungsbauarbeiten der zuständigen Leitungsverwaltungen Bauphase 3 Abbruch und Ersatzneubau der westlichen Brückenhälfte der Sellheimbrücke Fertigstellung Ersatzneubau der Blankenburger Laakebrücke Fertigstellung der westlichen Rampenbereiche mit Straßenbau für die Fahrbahn und den Geh- und Radweg Fertigstellung der Leistungen zur Straßenentwässerung des Karower Damms / Blankenburger Chaussee Herstellung der westlichen Öffentlichen Beleuchtung Leitungsbauarbeiten der zuständigen Leitungsverwaltungen Bauphase 4 Fertigstellung des westlichen Geh- und Radweges Herstellung der östlichen Öffentlichen Beleuchtung Rückbau der beiden Behelfsbrücken Bauphase 5 Erneuerung der westlichen Erschließungsstraßen Leistungen zur Straßenentwässerung der westlichen Erschließungsstraßen Herstellung der Öffentlichen Beleuchtung der Erschließungsstraßen Leitungsbauarbeiten der zuständigen Leitungsverwaltungen im Bereich der westlichen Erschließungsstraßen Rückbau der Bestandsfundamente der Sellheimbrücke unterhalb der Fernbahngleise Die Durchführung der Bauleistungen erfolgt unter Berücksichtigung der notwendigen und vorab zu genehmigenden Gleissperrungen der Deutschen Bahn (Sperrpausen). Parallel zu den Bauphasen erfolgen fortwährend die Ausgleichs- und Ersatzmaßnahmen aus naturschutz- und umweltrechtlichen Planungen und Genehmigungen. Die Angaben zur Verkehrsführung während der Bauzeit werden in der weiteren Planung und Projektvorbereitung konkretisiert. Der zweistreifige Kfz-Verkehr einschließlich ÖPNV (Bus) soll weitgehend aufrecht erhalten bleiben. Insbesondere in der ersten Bauphase müssen aber einstreifige Verkehrsführungsphasen mit Lichtsignalanlagenregelung (Gegenverkehrsanlagen) eingerichtet werden. Weiterhin sind, z.B. im Rahmen der notwendigen Abbrucharbeiten der Sellheimbrücke, kurzzeitige Vollsperrungen (Wochenendvollsperrungen) für den ÖPNV bzw. MIV notwendig. Diesbezügliche Abstimmungen erfolgen parallel zu den Planungen insbesondere mit der Straßenverkehrsbehörde sowie den Berliner Verkehrsbetrieben (BVG). Auch wenn die unmittelbaren Kreuzungen im Norden und Süden außerhalb der Gesamtmaßnahme liegen und somit baulich nicht umgestaltet werden, erfolgen durch die bauzeitlichen Verkehrsführung Eingriffe in den fließenden Verkehr. Folgende Verkehrsführungen sind bauphasenbezogen vorgesehen: Bauphase 0 ÖPNV / Kfz-Verkehr auf der Bestandsfahrbahn (zweistreifig) Fuß- und Radverkehr auf dem vorhandenen Gehweg bzw. auf der Bestandsfahrbahn Bauphase 1 ÖPNV / Kfz-Verkehr auf provisorischer bzw. Bestandsfahrbahn (zweistreifig mit schrittweiser Einstreifigkeit jeweils auf einer Länge von ca. 150 m mit Gegenverkehrs-Lichtsignalanlage) Fuß- und Radverkehr über Behelfsbrückenkonstruktion Bauphase 2 ÖPNV / Kfz-Verkehr auf provisorischer Fahrbahn (zweistreifig) Fuß- und Radverkehr über Behelfsbrückenkonstruktion Bauphase 3 ÖPNV / Kfz-Verkehr auf der östlichen neuen Fahrbahn und des provisorisch hergestellten östlichen Rad- und Gehweges (zweistreifig) Fuß- und Radverkehr über Behelfsbrückenkonstruktion Bauphase 4 ÖPNV / Kfz-Verkehr auf der neuen Fahrbahn (zweistreifig) Fuß- und Radverkehr auf dem neuen westlichen Geh- und Radweg Bauphase 5 ÖPNV / Kfz-Verkehr auf der neuen Fahrbahn (zweistreifig) Fuß- und Radverkehr auf den beidseitigen neuen Geh- und Radwegen Bauwerksdaten
Hinweis Verkehrsmengenkarten DTVw Die Abteilung Verkehrsmanagement ist für die Durchführung und Auswertung von Verkehrserhebungen zuständig, die für die Behörden des Landes Berlin für die Zwecke der Verkehrslenkung und -planung sowie Stadtplanung benötigt werden. Grundlage ist das im Stadtentwicklungsplan Verkehr dargestellte und regelmäßig fortgeschriebene übergeordnete Straßennetz von Berlin . Dazu gehören insbesondere die Erfassung des fließenden und ruhenden Verkehrs auf den Straßen und öffentlichen Geländen des Landes Berlin, aber auch Geschwindigkeitsmessungen für statistische Zwecke, Rückstaulängenerfassung. Verkehrserhebungen werden schwerpunktmäßig von zwei Arbeitsbereichen angefordert: den Straßenverkehrsbehörden Die Straßenverkehrsbehörde ist z.B. dazu verpflichtet, den Pegel des Lärms tags und nachts zu ermitteln, bevor sie straßenverkehrsbehördliche Maßnahmen anordnet (Schutz der Wohnbevölkerung vor Lärm, § 45 Abs. 1 Nr. 3 StVO; Lärmschutz-Richtlinien-StV). Dazu ist die Angabe von Verkehrsbelastungen für die entsprechenden Straßen erforderlich. Es dürfen nur Daten verwendet werden, die zeitnah das aktuelle Verkehrsgeschehen abbilden. Ähnliche Vorschriften gelten vor der Anordnung von Lichtsignalanlagen / Ampeln, bei Lkw-Fahrverboten etc. den planenden Abteilungen der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt. Zur Erfüllung der Pflichtaufgaben im Bereich der Verkehrsplanung und des Verkehrsmanagements ist die Bereitstellung aktueller Daten zur Verkehrsbelastung unabdingbar. Erhebungsschwerpunkte sind dabei: Vorbereitung von Planungsverfahren Erhebungen im Zusammenhang mit der Beseitigung von Unfallschwerpunkten Erhebungen in Zusammenhang mit der Einrichtung von Busspuren Erhebungen im Zusammenhang mit dem Bau und der Planung von Lichtsignalanlagen Qualifizierte Fortschreibung der Verkehrsmodelle Standardisierte Verfahren zur Wirtschaftlichkeitsberechnung Fortschreibung der Gesamtverkehrsentwicklung verschiedener Verkehrsträger auf der Basis aktueller Verkehrsstärken (durchschnittlicher täglicher Verkehr, DTV-Werte) werden Emissionskataster für Luftverunreinigungen und Lärmbelastungen aufgestellt Weitere Erkenntnisse aus den Verkehrsdaten des Landes Berlin finden Sie – bezogen auf den DTV – auch hier: Umweltatlas Berlin: Verkehrsmengen DTV Die aktuellen Daten und die Jahresberichte sind auf folgender Seite abrufbar: Zählstellen und Fahrradbarometer: Fahrradverkehr in Zahlen Die Verkehrsmengenkarte DTVw 2019 wurde überarbeitet und enthält im Vergleich zur Vorgängerversion vereinzelt neue Werte. Die einzelnen Änderungen sind in einer Übersicht dargestellt. Die geänderten Werte werden ausschließlich im FIS-Broker auf den aktuellen Stand gebracht. Die PDF-Versionen der Karte und des Ergebnisberichts werden nicht aktualisiert.
Bild: Tom Kretschmer Zahlen und Fakten zum Verkehr Eine moderne Verkehrspolitik braucht verlässliche Zahlen. Daher nutzen wir für unsere Planung Daten und Fakten, die uns Auskunft geben über den Verkehr, die Kosten und Finanzierung sowie die Umweltbelastung. Diese Daten helfen uns dabei, die Mobilität aller Bevölkerungsgruppen zu sichern. Weitere Informationen Bild: SenUVK Leitfaden für verkehrliche Untersuchungen Eine Standortplanung und Ansiedlungspolitik, die vorausschauend die möglichen verkehrlichen Auswirkungen größerer Vorhaben frühzeitig in alle Überlegungen einbezieht, ist eine der grundlegenden Voraussetzungen für einen wirkungsvollen und stadtverträglichen Personen- und Wirtschaftsverkehr. Weitere Informationen Bild: SenUVK, MIL Brandenburg Verkehrsmodell Für die Frage wie bspw. die Infrastruktur in ca. 10 bis 15 Jahren aussehen soll, ist der Einsatz von Instrumenten und Methoden erforderlich, die künftige Geschehnisse abbilden. Mit Hilfe von Verkehrsmodellen bzw. daraus abgeleiteten Verkehrsprognosen können Planungen bewertet werden. Weitere Informationen Bild: argentum - Fotolia.com Ermittlung RLS-19 konformer Eingangswerte für schalltechnische Untersuchungen in Berlin Viele Bauvorhaben, Bebauungspläne oder objektkonkrete Verkehrsprognosen von Infrastrukturvorhaben beinhalten Verkehrsuntersuchungen oder schalltechnische Untersuchungen. Diese bauen auf spezifischen Daten auf. Weitere Informationen Bild: SenMVKU Teilverkehrszellen (TVZ) und Verkehrszellen (VZ) in Berlin Das räumliche Bezugssystem für den Verkehrsbereich sind die Teilverkehrszellen, Verkehrszellen bzw. die Verkehrsbezirke. Weitere Informationen Bild: SenMVKU Weniger dicke Luft für Berlin Um die Luftqualität zu verbessern, gestaltet die Senatsverwaltung die Mobilität in unserer Stadt umweltverträglicher und nachhaltiger. Dafür werden verschiedene Maßnahmen in ganz Berlin etabliert. Diese basieren auf Datenauswertungen zu Verkehrsströmen, Parkplätzen und Luftschadstoffbelastung. Alle Maßnahmen und Projekte lassen sich unter dem übergreifenden Projekttitel des erweiterten umweltsensitiven Verkehrsmanagements – kurz eUVM – zusammenfassen. Weitere Informationen Angaben zu Verkehrsmengen im Bestand im Straßenverkehr finden Sie hier. Informationen zu Verkehrserhebungen
Biodiversity in Europe is strongly affected by atmospheric nitrogen and sulfur deposition to ecosystems. Within the PINETI-4 (Pollutant Input and Ecosystem Impact) project the deposition of nitrogen and sulfur compounds across Germany was quantified for the years 2000, 2005, 2010 and 2015 to 2019, using the atmospheric chemical transport model LOTOS-EUROS and precipitation composition measurements. Model improvements lead to better evaluation scores in comparison to observations compared to the previous PINETI-3 report. While nitrogen deposition has been decreasing in the last decades, the results show that in 2019 critical loads for eutrophication were still exceeded for nearly 70 % of ecosystems. Veröffentlicht in Texte | 130/2024.
Origin | Count |
---|---|
Bund | 151 |
Land | 26 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 122 |
Text | 17 |
Umweltprüfung | 8 |
unbekannt | 32 |
License | Count |
---|---|
geschlossen | 45 |
offen | 129 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 84 |
Englisch | 116 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 1 |
Dokument | 10 |
Keine | 113 |
Webdienst | 4 |
Webseite | 57 |
Topic | Count |
---|---|
Boden | 149 |
Lebewesen & Lebensräume | 150 |
Luft | 145 |
Mensch & Umwelt | 179 |
Wasser | 135 |
Weitere | 170 |