Bakterien mit speziellen strukturbildenden oder metabolischen Fähigkeiten (z.B. Flockenbildner, Nitrifikanten, CKW-Abbauer) werden in Bioaggregaten (Granula, Biofilme) angereichert und dann in Reaktoren zur biologischen Abwasserreinigung eingemischt. Durch Übertragung der neuen Fähigkeiten in die autochtone Lebensgemeinschaft (Bioaugmentation) soll die Einarbeitung des biologischen Systems und dessen Anpassung an geänderte Prozessbedingungn beschleunigt werden. Bedeutungsvoll ist ein solcher steuernder Eingriff dann, wenn die benötigten Bakterienarten sich nur sehr langsam vermehren (z.B. Nitrifikanten; Bio-P Bakterien), beim Anfahren einer Belebungs- oder Biofilmanlage, bei Regeneration der Anlage nach einem Unfall, wenn Abwässer mit ungewöhnlicher Zusammensetzung zu reinigen sind (z.B. spezielle Prozessabwässer aus der Industrie) oder Abwässer mit stark wechselnder Fracht und Zusammensetzung (z.B. Abwasser aus Firmen mit Kampagnenbetrieb, Abwasser aus touristischen Objekten). Es wird zunächst darum gehen, spezielle Anreicherungskulturen in Granula-Form heranzuzüchten. Nach Zudosieren der Granula in eine Modell-Belebungsanlage soll beobachtet werden, wie sich die Granula im System verhalten, ob sich die mit den Granula importierten Arten in der Mischkultur verbreiten, bzw. ob es durch Gentransfer zu einer Verbreitung der speziellen Fähigkeiten kommt.
Eine vierstufige Laborreaktorkaskade zur kontinuierlichen aeroben CSB-Reduktion ist unter dem Aspekt konzipiert worden, fuer spezifische betriebliche Fragestellungen passende Anlagenschaltungen zur biologischen Phosphor- und Stickstoffelimination zu entwickeln. Die hier vorgeschlagene Anlagenschaltung im Hauptstromverfahren ermoeglicht eine nahezu vollstaendige Phosphor- und Stickstoffelimination von Abwaessern mit erhoehten Ammonium- und Nitratfrachten. Sie basiert auf dem A/O-Verfahren, ergaenzt durch zwei anoxe Reaktoren, in denen der Zulauf, der Rueckschlamm sowie die im aeroben Reaktor durch Nitrifikation erzeugten Nitratverbindungen denitrifiziert werden. Bei einer Substratzulaufkonzentration (DOC) von etwa 100 mg/l betraegt der Substratabbaugrad 95 bis 100 Prozent, der Phosphateliminationsgrad bei einem Zulauf PO4-P von etwa 5 mg/l 85 bis 100 Prozent. Die stufenweise bis auf 25 mg/l erhoehten NH4-N Zulaufkonzentrationen werden nach einer Einfahrphase bis zu 100 Prozent abgebaut, der Nitratabbaugrad liegt bei 0,9 und 1,0.
Phosphor und Stickstoff sind in vielen Gewaessern wachstumslimitierende Naehrstoffe. Eine Einleitung der Naehrstoffe in ein Gewaesser kann zu einem vermehrten Algenwachstum fuehren (Eutrophierung). Deshalb ist die Entfernung beider Naehrstoffe vor der Einleitung in ein Gewaesser gesetzlich vorgeschrieben. Fuer die Bio-P-Elimination werden zum gegenwaertigen Zeitpunkt ausschliesslich Belebungsverfahren eingesetzt, bei denen die Bakterien in Form von Belebtschlammflocken im Wasser suspendiert sind. Verfahren, bei denen die beteiligten Organismen in Biofilmen fixiert werden, sind bisher nicht im Einsatz, koennen aber Vorteile vor Belebtschlammanlagen bieten: (1) Probleme mit der Absetzbarkeit des Belebtschlammes und Schwimmschlammbildung werden vermieden, (2) wegen des Fehlens der Absetzphase koennen keine Probleme durch eine eventuelle P-Rueckloesung in der unbeluefteten Absetzphase entstehen, (3) im Biofilm koennen langsam wachsende Organismen besonders effektiv angereichert werden, (4) mit Biofilmreaktoren ist es moeglich, kompaktere Klaeranlagen zu bauen, da hoehere aktive Biomassen eingesetzt werden koennen. Ziel des Forschungsprojektes ist die Optimierung der biologischen P-Elimination (Bio-P-Elimination) bei vollstaendiger Nitrifikation in einem Biofilmreaktor.
Ziel des Vorhabens ist es, die im Abwasser und im Schlamm enthaltenen Phosphorverbindungen in hoch konzentrierter und wieder verwertbarer Form zurückzugewinnen, um den Phosphorkreislauf weitgehend und auf möglichst kurzem Wege zu schließen. In Deutschland haben sich die chemische Fällung und die vermehrte biologische Phosphorelimination als Verfahren zur Entfernung von Phosphor aus dem Abwasser etabliert. Die Verwertung des anfallenden Klärschlamms erfolgte bisher in der Landwirtschaft bzw. im Landschaftsbau, zur Entsorgung wurde der Klärschlamm deponiert bzw. spätestens ab Juni 2005 verbrannt. Im Zuge der schärferen Grenzwerte für eine stoffliche Klärschlammverwertung wird in Zukunft die Verbrennung von Klärschlamm einen Entsorgungspfad mit wachsender Bedeutung darstellen. In einer ersten Phase des Projektes wurden Untersuchungen zur Phosphorrückgewinnung im Labormaßstab durchgeführt, deren Ergebnisse dann in der zweiten Phase auf eine halbtechnische Umsetzung ausgewählter Verfahren übertragen werden sollten. In der ersten Phase wurden folgende drei Ansätze verfolgt: Ansatz 1: Rückgewinnung von Phosphor aus dem Überschussschlamm der biologischen Phosphorelimination; Ansatz 2: Rückgewinnung von Phosphor aus dem Fällschlamm der chemischen Phosphorelimination; Ansatz 3: Rückgewinnung von Phosphor aus Klärschlammasche.