API src

Found 1496 results.

Related terms

Hocheffiziente und robuste Leistungselektronik - ERLE

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Probing the Earth's subdecadal core-mantle dynamics based on satellite geomagnetic field models

The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.

Produktverantwortung Mehrwegangebotspflicht Aktionen zu Elektroschrott Vorschriften zur Produktverantwortung Abfallrechtliche Marktüberwachung Initiativen

Nach dem Verursacherprinzip tragen Hersteller und diejenigen, die Produkte in den Verkehr bringen oder importieren, die umfassende Entsorgungsverantwortung für deren umweltgerechte Verwertung und Beseitigung. Jährlich fallen über 18 Millionen Tonnen Verpackungsabfälle in Deutschland an und der Verbrauch steigt weiterhin. Um diesen Entwicklungen entgegen zu wirken und Abfälle von Einwegverpackungen zu vermeiden, ist das Angebot von Mehrwegverpackungen essentiell. Dies soll durch die Mehrwegsangebotspflicht unterstützt werden. Elektroschrott stellt einen der am schnellsten wachsenden Abfallströme dar. Die immer stärkere Verbreitung und die schnelle Modellfolge im Elektronikbereich beanspruchen die natürlichen Ressourcen der Erde in hohem Maße. Die in den Geräten enthaltenen Schadstoffe belasten die Umwelt. Aus Umwelt- und Ressourcensicht ist somit eine lange Nutzungsdauer anzustreben, an deren Ende eine möglichst vollständige Erfassung und hochwertige Behandlung der Elektroaltgeräte stehen sollte. Hinweise zur korrekten Entsorgung von Elektroschrott für die Bürgerinnen und Bürger sind beispielsweise im Faltblatt des Landesamtes für Umweltschutz Sachsen-Anhalt zu finden. Jede Aktion zur Förderung der Sammlung, der Reparatur, der Wiederverwendung oder Wiederverwertung von Elektroschrott ist im Rahmen des Internationalen Elektroschrott-Tages am 14. Oktober jeden Jahres willkommen! Für weitere Informationen zum Aktionstag besuchen Sie den entsprechenden Bereich der Website des WEEE-Forums . Hier können Sie auch eine eigene Aktion registrieren. Die abfallrechtlichen Grundlagen sind im dritten Teil des Kreislaufwirtschaftsgesetzes formuliert. Ziel ist es Produkte so zu gestalten, dass Ressourcen geschont, das Entstehen von Abfällen vermindert, eine Wiederverwertung ermöglicht und schließlich eine umweltverträgliche Verwertung oder Beseitigung der zu Abfall gewordenen Produkte sicher gestellt werden. Die wesentlichen Instrumente der Produktverantwortung sind Rücknahmepflichten der Hersteller für ihre zu Abfall gewordenen Produkte sowie die Festlegung von Sammel- und Verwertungsanforderungen. Aber auch konkrete Anforderungen an die Produktgestaltung sind festgelegt. Ansatzpunkt hierbei ist die Annahme, dass die Hersteller die Zusammensetzung, die Inhaltsstoffe und die Auswirkungen ihrer Produkte am besten kennen. Sie sind somit am ehesten in der Lage, diese nach der Nutzungsphase in Wert- und Schadstoffe zu trennen und einer Wiederverwendung oder einer hochwertigen Verwertung zuzuführen. Die Produktverantwortung wurde in Deutschland insbesondere für Verpackungen, Altöl, Batterien, Altfahrzeuge sowie Elektroaltgeräte eingeführt. Regelungen sind beispielsweise in den folgenden abfallrechtlichen Vorschriften zu finden: ElektroG - Elektrogesetz für das Inverkehrbringen, die Rücknahme und die umweltgerechte Entsorgung von Elektro- und Elektronikaltgeräten Das Elektrogesetz regelt, dass Elektro- und Elektronik-Altgeräte getrennt gesammelt und umweltverträglich entsorgt werden. Zum untergesetzliches Regelwerk des ElektroG gehört die Elektro- und Elektronikgeräte-Stoff-Verordnung , welche insbesondere die Verwendung gefährlicher Stoffe in Elektro- und Elektronikgeräten beschränkt. Außerdem gilt die Verordnung über Anforderungen an die Behandlung von Elektro- und Elektronik-Altgeräten . Sie enthält weitergehende Anforderungen an die Behandlung von Elektroaltgeräten einschließlich der Verwertung und des Recyclings. Informationen zur Entsorgung von Elektroaltgeräten Informationen des BMU zum ElektroG Website der Stiftung elektro-altgeräte register (ear) BattG - Batteriegesetz für das Inverkehrbringen, die Rücknahme und die umweltgerechte Entsorgung von Batterien und Akkumulatoren Am 1.1.2021 ist das Erste Gesetz zur Änderung des Gesetzes über das Inverkehrbringen, die Rücknahme und die umweltverträgliche Entsorgung von Batterien und Akkumulatoren in Kraft getreten. Wesentliche Elemente der Gesetzesänderung sind auf den Seiten des Bundesumweltministeriums veröffentlicht. Derzeit gibt es folgende Rücknahmesysteme am Markt: Herstellereigenes Rücknahmesystem der Stiftung GRS Batterien CCR REBAT Öcorecell DS Entsorgungs- und Dienstleistungs-GmbH Das Verzeichnis der genehmigten Eigenrücknahmesysteme ist auf den Seiten der Stiftung Elekroaltgeräte-Register ear hier zu finden. VerpackG - Verpackungsgesetz über das Inverkehrbringen, die Rücknahme und die hochwertige Verwertung von Verpackungen Das mit dem Ersten Gesetz zur Änderung des Verpackungsgesetzes eingeführte Verbot des Inverkehrbringens von leichten Kunststoff-Tragetaschen gilt ab dem 01.01.2022. Weitere Änderungen des Verpackungsgesetzes enthält das Gesetz zur Umsetzung von Vorgaben der Einwegkunststoffrichtlinie und der Abfallrahmenrichtlinie im Verpackungsgesetz. Dessen überwiegender Teil ist am 03.07.2021 in Kraft getreten. Es enthält wesentliche Neuerungen: eine verpflichtende Mindestrezyklat-Einsatzquote für bestimmte Einwegkunststoff-Getränkeflaschen (ab 2025), eine Pflicht zum Angebot von alternativen Mehrwegverpackungen beim Inverkehrbringen von Einwegkunststoff-Lebensmittelverpackungen und von Einweg-Getränkebechern (ab 2023), eine Pflicht zur Getrenntsammlung von bestimmten Einwegkunststoff-Getränkeflaschen, die v.a. über eine Ausweitung der Pfandpflicht auf nahezu alle Einwegkunststoff-Getränkeflaschen sowie auf alle Getränkedosen 2022 erreicht werden soll (ab 2022, für mit Milch oder Milcherzeugnissen befüllte Flaschen erst ab 2024)  und eine Prüfpflicht für Betreiber von Online-Marktplätzen, ob die bei ihrer Plattform gelistete Hersteller im Verpackungsregister der Zentralen Stelle verzeichnet sind und sich bei einem dualen System beteiligt haben. - Informationen zur Entsorgung von Verpackungsabfällen EWKVerbotsV - Einwegkunststoff-Verbotsverordnung für das Verbot des Inverkehrbringens von bestimmten Einwegkunststoffprodukten und von Produkten aus oxo-abbaubarem Kunststoff Künftig sollen bestimmte Einwegkunststoffprodukte verboten sein, für die es bereits umweltfreundliche Alternativen gibt. Das Verbot betrifft Produkte wie Wattestäbchen, Einmalbesteck und -teller, Trinkhalme, Rührstäbchen, Wattestäbchen und Luftballonstäbe aus Kunststoff. Auch To-Go-Lebensmittelbehälter und Getränkebecher aus geschäumtem expandiertem Polystyrol (auch bekannt als Styropor) sollen nicht mehr auf den Markt kommen. Die Verordnung setzt die EU-Einwegkunststoff-Richtlinie um und ist am 3.7.2021 in Kraft getreten. EWKKennzV – Einwegkunststoffkennzeichnungsverordnung über die Beschaffenheit und Kennzeichnung von bestimmten Einwegkunststoffprodukten Die EWKKennzV setzt weitere Teilaspekte der EU-Einwegkunststoffrichtlinie um. So dürfen ab dem 03.07.2024 Einweg-Getränkebehälter aus Kunststoff nur noch in Verkehr gebracht werden, wenn ihre Kunststoffverschlüsse und -deckel für die gesamte Nutzungsphase fest mit den Behältern verbunden sind. Daneben wird geregelt, dass ab dem 03.07.2021 bestimmte Einwegkunststoffprodukte auf ihrer Verpackung (Hygieneeinlagen, Tampons und Tamponapplikatoren, Feuchttücher, Tabakprodukte mit kunststoffhaltigen Filtern) oder auf dem Produkt (Getränkebecher) eine Kennzeichnung tragen. Die Kennzeichnung soll auf zu vermeidende Entsorgungsmethoden hinweisen. Ebenso soll deutlich werden, dass das Produkt Kunststoff enthält und welche negativen Auswirkungen eine unsachgemäße Entsorgung für die Umwelt hat. Die EWKKennzV ist am 03.07.2021 in Kraft getreten. AltfahrzeugV - Altfahrzeugverordnung für die Überlassung, Rücknahme und umweltverträgliche Entsorgung von Altfahrzeugen Weitere Informationen finden Sie auf den Seiten des Bundesumweltministeriums . Ebenfalls in diesen abfallrechtliche Vorschriften geregelt sind produktbezogene Anforderungen zur Marktüberwachung. Mit der Marktüberwachungsverordnung der EU 2019/1020 wurden die Vorschriften zur Marktüberwachung modernisiert, insbesondere mit Blick auf die digitalen Märkte. Die Länderarbeitsgemeinschaft Abfall hat Informationen zur Marktüberwachung hier veröffentlicht, unter anderem das Marktüberwachungskonzept in der Fassung vom Mai 2022. Länderübergreifende Servicestelle Marktüberwachung www.batterie-zurueck.de ElektroG Wie.Was. Wo.Warum Kampagne Plan E Weniger ist mehr - zur Vermeidung von Plastikmüll

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Drebbersches Moor, Germany

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Fochteloër Veen, the Netherlands

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pichlmaier Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pürgschachen Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Global optimized REVEALS reconstruction of past vegetation cover for taxonomically harmonized pollen data sets

This data set presents the reconstructed vegetation cover for 3083 sites based on harmonized pollen data from the data set LegacyPollen 2.0 (https://doi.pangaea.de/10.1594/PANGAEA.965907) and optimized RPP values. 1115 sites are located in North America, 1435 in Europe, and 533 in Asia. Sugita's REVEALS model (2007) was applied to all pollen records using REVEALSinR from the DISQOVER package (Theuerkauf et al. 2016). Pollen counts were translated into vegetation cover by taking into account taxon-specific pollen productivity and fall speed. Additionally, relevant source areas of pollen were also calculated using the aforementioned taxon-specific parameters and a gaussian plume model for deposition and dispersal. In this optimized reconstruction, relative pollen productivity estimates for the ten most common taxa were first optimized by using reconstructed tree cover from modern pollen samples and LANDSAT remotely sensed tree cover (Townshend 2016) for North America, Europe, and Asia. Values for non-optimized taxa for relative pollen productivity and fall speed were taken from the synthesis from Wiezcorek and Herzschuh (2020). The average values from all Northern Hemisphere values were used where taxon-specific continental values were not available. We present tables with optimized reconstructed vegetation cover for all Europe, North America and Asia. As further details we list a table with the taxon-specific parameters used and a list of parameters adjusted in the default version of REVEALSinR.

REVEALS reconstruction of past vegetation cover with optimized RPP values for European samples

This data set presents the reconstructed vegetation cover for 1451 European sites based on harmonized pollen data from the data set LegacyPollen 2.0 and optimized RPP values. Sugita's REVEALS model (2007) was applied to all pollen records using REVEALSinR from the DISQOVER package (Theuerkauf et al. 2016). Pollen counts were translated into vegetation cover by taking into account taxon-specific pollen productivity and fall speed. Additionally, relevant source areas of pollen were also calculated using the aforementioned taxon-specific parameters and a gaussian plume model for deposition and dispersal and forest cover was reconstructed. In this optimized reconstruction, relative pollen productivity estimates for the ten most common taxa were first optimized by using reconstructed tree cover from modern pollen samples and LANDSAT remotely sensed tree cover (Sexton et al. 2013) for Europe. Values for non-optimized taxa for relative pollen productivity and fall speed were taken from the synthesis from Wiezcorek and Herzschuh (2020). The average values from all Northern Hemisphere values were used where taxon-specific continental values were not available. We present tables with optimized reconstructed vegetation cover for all records in Europe. As further details we list a table with the taxon-specific parameters used and a list of parameters adjusted in the default version of REVEALSinR.

REVEALS reconstruction of past vegetation cover with optimized RPP values for Asian samples

This data set presents the reconstructed vegetation cover for 706 Asian sites based on harmonized pollen data from the data set LegacyPollen 2.0 and optimized RPP values. Sugita's REVEALS model (2007) was applied to all pollen records using REVEALSinR from the DISQOVER package (Theuerkauf et al. 2016). Pollen counts were translated into vegetation cover by taking into account taxon-specific pollen productivity and fall speed. Additionally, relevant source areas of pollen were also calculated using the aforementioned taxon-specific parameters and a gaussian plume model for deposition and dispersal and forest cover was reconstructed. In this optimized reconstruction, relative pollen productivity estimates for the ten most common taxa were first optimized by using reconstructed tree cover from modern pollen samples and LANDSAT remotely sensed tree cover (Sexton et al. 2013) for Asia. Values for non-optimized taxa for relative pollen productivity and fall speed were taken from the synthesis from Wiezcorek and Herzschuh (2020). The average values from all Northern Hemisphere values were used where taxon-specific continental values were not available. We present tables with optimized reconstructed vegetation cover for records in Asia. As further details we list a table with the taxon-specific parameters used and a list of parameters adjusted in the default version of REVEALSinR.

1 2 3 4 5148 149 150