In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
As global leaders head to the G20 summit to consider solutions to the current global economic crisis, a new report prepared by Ecofys and Germanwatch for WWF and E3G reveals that many of the economic recovery packages being discussed are a missed opportunity in terms of stimulating a green recovery, and actually run the risk of locking the world into a high-carbon future. The report provides the most detailed and comprehensive analysis to date of the proposed 'stimulus' packages of five key countries - France, Germany, Italy, the UK and the US - as well as the package agreed by the European Union as a whole.
Das internationale Pool-System fuer Mehrwegfischtransportverpackungen ist aufgebaut und etabliert sich zunehmend im Markt. 1996 konnten ueber 1,6 Mio. Vermietungen von Mehrwegboxen erzielt werden. Zur Zeit wird noch an der Entwicklung einer massgeschneiderten EDV-Loesung fuer unser internationales Mehrwegsystem gearbeitet.
The EU Climate Policy Tracker (EU CPT) presents up-to-date developments in climate and energy policies in the EU-27. Although government policy is the single most influential driver behind the fight against climate change, there is limited information about the status of the policies that influence increases or decreases in emissions. The EU Climate Policy Tracker (EU CPT) is intended to bridge this gap. The project holds two references in focus at the same time: a 2050 goal of near total decarbonisation, and our current policy trajectory. A uniquely developed scoring method, modelled on appliance efficiency labels (A-G), gives an indication of how Member States are doing compared to a low-carbon policy package. This results in aggregated scores, supported with a rich background of information, for all Member States, at EU level, and for different economic sectors. The project is intended to be a resource for those seeking information, a means of sharing best practice, and a way of holding policymakers to account. In 2011 we updated our initial rating from November 2010. The findings of 2010 showed that the average score across the EU was an E, indicating that the level of effort needed to treble to be on track to reach the 2050 vision. Looking at the developments in 2011, we can see that there has been considerable activity in many countries, though the overall scoring has generally remained constant: positive actions are counteracted by negative developments or budget cuts. The EU CPT is a joint project by Ecofys and WWF. The project is funded by the European Climate Foundation. Visit the EU Climate Policy Tracker on: www.climatepolicytracker.eu.
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
| Origin | Count |
|---|---|
| Bund | 1260 |
| Land | 38 |
| Wissenschaft | 172 |
| Zivilgesellschaft | 7 |
| Type | Count |
|---|---|
| Chemische Verbindung | 68 |
| Daten und Messstellen | 151 |
| Ereignis | 7 |
| Förderprogramm | 814 |
| Gesetzestext | 1 |
| Lehrmaterial | 1 |
| Software | 2 |
| Taxon | 1 |
| Text | 416 |
| Umweltprüfung | 1 |
| unbekannt | 137 |
| License | Count |
|---|---|
| geschlossen | 140 |
| offen | 1289 |
| unbekannt | 32 |
| Language | Count |
|---|---|
| Deutsch | 905 |
| Englisch | 929 |
| Resource type | Count |
|---|---|
| Archiv | 32 |
| Bild | 1 |
| Datei | 78 |
| Dokument | 55 |
| Keine | 715 |
| Multimedia | 2 |
| Unbekannt | 6 |
| Webdienst | 3 |
| Webseite | 631 |
| Topic | Count |
|---|---|
| Boden | 1029 |
| Lebewesen und Lebensräume | 1160 |
| Luft | 843 |
| Mensch und Umwelt | 1461 |
| Wasser | 830 |
| Weitere | 1073 |