s/verschlaemmung/Verschlammung/gi
Die Oberflächenabflusskennwerte (OAK) wurden speziell für die Umsetzung des LUBW-Leitfadens "Kommunales Starkregenrisikomanagement in Baden-Württemberg" entwickelt und bilden die hydrologische Datengrundlage für die hydraulische Modellierung von Starkregengefahrenkarten. Die OAK geben für drei verschiedene Starkregenszenarien (selten, außergewöhnlich und extrem) an, welcher Anteil des Niederschlags nicht vom Boden aufgenommen werden kann und somit auf der Fläche zum Abfluss kommt. Zusätzlich wurde für jedes Szenario eine Variante verschlämmt und unverschlämmt berechnet, wobei bei der verschlämmten Variante die Infiltrationsleistung von Ackerflächen aufgrund von Verschlämmung reduziert wurde. Die Oberflächenabflusskennwerte liegen als GeoTIFFS getrennt nach fünf Szenarien vor. Jedes Szenario besteht aus 12 Zeitschritten-Raster und einem Summen-Raster. Detaillierte Informationen zu den OAK können dem Anhang 3 zu o.g. Leitfaden entnommen werden (https://www.lubw.baden-wuerttemberg.de/wasser/starkregenrisikomanagement). Anmerkung: Die OAK wurden ausschließlich für die Entwicklung von Starkregengefahrenkarten nach Leitfaden der Landesanstalt für Umwelt Baden-Württemberg erstellt, davon abweichende Anwendungen werden nicht empfohlen.
Der Krummenhagener See droht durch Verschlammung vollständig zu verlanden. Die Studie untersucht Schlammanfallmenge, Verwertbarkeit, Schadstoffbestandteile und Möglichkeiten einer Entschlammung. Weiterhin werden Kosten verglichen und Lösungsvorschläge unterbreitet.
Auf dem Grundstück FlNr. 829/12 der Gemarkung Cham im Bereich des städtischen Freibades soll der Uferbereich am Regen auf einer Fläche von ca. 300 m² bis zu 1,50 m tief abgegraben und eine Badebucht angelegt werden. Dadurch entsteht eine Flachwasserzone mit einer Wassertiefe von 0,30 - 0,90 m. In die Gewässersohle wird Kies eingebracht. Am Beginn und Ende der Bucht wird das neu geschaffene Ufer mit einer Steinschüttung vor Ausspülungen geschützt. Um eine Verschlammung der Gewässersohle in der Badebucht zu vermeiden, wird eine Lenkbuhne zur Erhaltung einer ausreichenden Durchströmung errichtet. Als Zugang zum Regen wird eine Treppe mit Handlauf im östlichen Bereich der Badebucht angeordnet. Für diesen Gewässerausbau (§ 67 WHG) wurde beim Landratsamt Cham unter Vorlage von Plänen und Beilagen die Erteilung einer wasserrechtlichen Gestattung beantragt.
Funktionierende Böden sind ein wesentliches Element im Wasserhaushalt: Sie können Regenwasser rasch aufnehmen, große Mengen davon speichern und später den Pflanzen zur Verfügung stellen sowie die Grundwasserneubildung sicherstellen. Eingriffe des Menschen schädigen diese wertvollen Bodenfunktionen: Versickerung und Wasserspeicherfähigkeit werden im urbanen Raum mit hoher Flächeninanspruchnahme durch Siedlung und Verkehr reduziert und auf landwirtschaftlichen Flächen entstehen Gefügeschäden durch Verschlämmung und Bodenverdichtung. Die Kommission Bodenschutz beim Umweltbundesamt (KBU) empfiehlt seit langem die markante Minderung des unregulierten Flächenverbrauchs. Quelle: Umweltbundesamt
Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3.2) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasserflurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Die Verdunstung der Block(teil)flächen wird dann aus der Differenz von korrigiertem Niederschlag (Korrigierter Niederschlag = Niederschlag multipliziert mit dem Faktor 1,09 pauschal für Berlin) und Gesamtabfluss berechnet. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit typischen Nutzungen und ihren unterschiedlichen typischen Eigenschaften das Modell ABIMO angewandt und die Ergebnisse in Tab. 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wird seit der Ausgabe 2012 die Version des Programms ABIMO 3.2 verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Berücksichtigung des Einflusses begrünter Dächer auf die Daten zum Wasserhaushalt Durch die mit der Umweltatlaskarte 06.11 Gründächer (Ausgabe 2017) erstmalig vorliegenden flächendeckenden räumlichen Daten zu begrünten Dachflächen konnte für die aktuelle Ausgabe die Effekte der Gründächer auf den Wasserhaushalt erstmalig mit berechnet werden. Da das ursprüngliche Modell die Berücksichtigung grüner Dächer nicht vorsieht, musste ein Verfahren entwickelt werden, das erlaubt, diese Effekte trotzdem zu bilanzieren. Dazu war es zunächst erforderlich, belastbare Werte zum Verdunstungsverhalten aus der Literatur zu ermitteln. Die Literaturrecherche ergab unterschiedliche Jahresabflussbeiwerte für intensiv und extensiv begrünte Dächer (vgl. z. B. Rüngeler 1998, SenStadtWohn 2017). In der für die verwendete Datengrundlage ( Karte 06.11 , Ausgabe 2017) gewählten Methode wird auf Basis der spektralen Reflexionseigenschaften der Fernerkundungsdaten nur zwischen extensiv und intensiv begrünt unterschieden. Weitere wichtige Eigenschaften, wie z. B. Höhe des Bewuchses oder Substrataufbau können auf diese Weise nicht erfasst werden und liegen daher für die Auswertung bzgl. des Wasserhaushaltes auch nicht vor. Für die weitere Berechnung wurde deshalb von einem einheitlichen Jahresabflussbeiwert von 0,5 für alle Gründächer ausgegangen, d. h. sie verdunsten 50 % des Niederschlages. Ein normales, unbegrüntes Dach verdunstet auch einen geringen Teil des Niederschlages. Die Berechnung dieser Verdunstung erfolgt für jede Block- und Blockteilfläche mit ABIMO 3.2. Unbegrünte Gebäudedächer verdunsten demnach zwischen 75,5 mm/a und 83,6 mm/a unabhängig von den Kanalisierungsgraden und den Belagsarten. Das entspricht 12,3 % und 13,4 % des korrigierten Niederschlages. Zunächst wurde die zusätzliche Verdunstung eines begrünten Daches mit der folgenden Formel berechnet: Verdunstung GründachZusätzlich = Verdunstung Gründach – Verdunstung Normaldach Anschließend wurde die zusätzliche Verdunstung aller begrünten Dächer einer Block- bzw. Blockteilfläche summiert und von den Parametern Gesamtabfluss, Oberflächenabfluss sowie Versickerung abgezogen. Die Verdunstung mit Gründach berechnet sich aus der Verdunstung und der zusätzlichen Verdunstung. Diese Berechnungen wurde außerhalb des Programms ABIMO 3.2 im Nachgang durchgeführt (vgl. Goedecke/Gerstenberg 2019). Endergebnis Im Ergebnis der Berechnungen liegen für ca. 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung inkl. der Berücksichtigung der Gründächer vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z. B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines Quadratmeters unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.
In den vergangenen Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Umweltinformationssystem (UIS) zur Verfügung gestellt werden. Das von Glugla entwickelte Abflußbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepaßt. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluß (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluß als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluß und Oberflächenabfluß bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluß wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflußgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluß ermittelt werden. Zur Berechnung der grundwasserbeeinflußten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flußeinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflußte Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflußten Bedingungen erhöhte Verdunstung auf. Die Abflußbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflußbildung werden negativ (z. B. Fluß- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluß als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluß bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluß dem Gesamtabfluß. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluß. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluß wird – abhängig von dem Anschlußgrad an die Kanalisation – als Oberflächenabfluß über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfaßt, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluß und Oberflächenabfluß entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mußten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozeß durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen langjährige Mittelwerte für den Gesamtabfluß, den Oberflächenabfluß und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muß beachtet werden, daß die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu sind im Rahmen des Umweltinformationssystems spezielle ebenfalls flächendeckende und blockbezogene Auswertungen vorgenommen worden.
Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.
Vor etwa 10 Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten zur Ableitung des Regenwassers über die Kanalisation erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.
Ursachen von Erosion Starkregen Durch die Temperaturzunahme in Folge des Klimawandels nimmt die Anzahl der Starkregentage und die Regenerosivität zu. Durch die Veränderung von Windströmungen ziehen Regenschauer und Gewitter zudem langsamer. Der Boden ist bei einer großen Niederschlagsmenge nicht in der Lage, das Wasser vollständig aufzunehmen, dadurch kommt es zu einem erhöhten Oberflächenabfluss. Die Folgen sind zum einen Sturzfluten und Überschwemmungen , zum anderen werden Bodenpartikel verstärkt gelöst und abgetragen. Die Folgen von Starkregenereignissen werden in der Starkregengefahrenhinweiskarte NRW simuliert. Regenerosivität Als Regenerosivität wird die erosionswirksame Kraft des Niederschlags bezeichnet. Durch die kinetische Energie der Regentropfen können Bodenpartikel aus ihrem Verbund gelöst und weggespült werden. Durch die Temperaturzunahme in Folge des Klimawandels werden Starkregenereignisse häufiger und Regenschauer und Gewitter ziehen langsamer. Die Regenerosivität wird als R-Faktor mit der Einheit Newton/Stunde*Jahr (N/h*a) angegeben. Im Rahmen des Klimafolgenmonitorings wird die sie gemessen und ausgewertet, dabei wurde ein Anstieg der Regenerosivität in NRW um +44,2 N/h*a seit 1973 gemessen. Stoffausträge in das Grundwasser und Oberflächengewässer Der Stoffhaushalt von Böden ist durch komplexe Wechselwirkungen zwischen den Standortbedingungen, den Bodeneigenschaften, menschlichen Einflüssen wie der Bewirtschaftung und dem Klima geprägt. Aus dem Boden werden Nähr- und Schadstoffe mit dem Sickerwasser ausgewaschen. Durch Starkregen und eine erhöhte Bodenerosion würden: mehr Nährstoffe aus dem Boden ausgewaschen werden und für eine Eutrophierung von umliegenden Gewässern und dem Grundwasser führen. ein vermehrter Transport von im Boden gespeicherten Schadstoffen in die Gewässer einsetzen. ein erhöhter Eintrag von Bodenmaterial in Gewässer führt zusätzlich zu deren Verschlammung. Maßnahmen zum Erosionsschutz Vorsorge in der Landwirtschaft Die Europäische Union leistet Direktzahlungen in der Landwirtschaft. Der Bezug der Beihilfen ist an bestimmte Verpflichtungen gemäß der Cross Compliance-Regelungen gebunden. Dazu gehört auch eine erosionsmindernde Bewirtschaftung von Ackerflächen, auf denen ein erhöhtes Erosionsrisiko durch Wind oder Wasser festgestellt wurde. Es wurden Mindestanforderungen an die Bodenbedeckung festgelegt, das Ziel ist eine möglichst ständig bedeckte Bodenoberfläche. Das schützt vor dem Aufprall von Niederschlag, verringert die Abflussgeschwindigkeit und erhöht die Bodenfeuchte. Erosionsschutzmaßnahmen in der landwirtschaftlichen Praxis sind unter anderem die Wahl von Anbaufrüchten, die den Boden zu der Zeit bedecken, in der die Wahrscheinlichkeit für erosive Niederschläge besonders hoch ist. Wo möglich kann eine Direktsaat durchgeführt werden, Stroh und Erntereste zurückgelassen werden, die Bodenbearbeitung verringert werden und hangparallele Fahrgassen angelegt werden. Über den Erosionsschutz in der Landwirtschaft und die Cross Compliance-Vorschriften informiert auch die Landwirtschaftskammer NRW . Erhaltung von Dauergrünland Ein wichtiger Baustein in der EU-Agrarpolitik ist der Erhalt von Dauergrünland. Die relativ geschlossene Grasnarbe auf diesen Flächen schützt vor dem Abtrag der Bodenteilchen. Die Abnahme der Grünlandfläche darf nicht über 10 % liegen, außerdem muss jeder Umbruch genehmigt werden. Ein Dauergrünlandumbruch ohne Genehmigung wird sanktioniert. Antrag und Überwachung des Umbruchgebots erfolgt über die Landwirtschaftskammer NRW. Antrag auf auf Umwandlung von Dauergrünland 2024 Verstärkung der Fachberatung und Sensibilisierung Die Grundsätze der guten fachlichen Praxis werden durch die landwirtschaftlichen Beratungsstellen vermittelt (§ 17 Abs. 1 BBodSchG). Hier wird von der Bund/Länder-Arbeitsgemeinschaft Bodenschutz (LABO) gefordert , die Vermittlung von Informationen zum Erosionsschutz zu verbessern. Vorhandene Kenntnisse und Maßnahmenempfehlungen sollten demnach besser in die landwirtschaftliche Praxis integriert werden. Außerdem ist eine Sensibilisierung der Agierenden nötig. Dafür können vorhandene Informationen gezielt vermittelt werden. Grundlagen sind zum Beispiel Veröffentlichungen des Bundesministeriums für Ernährung und Landwirtschaft über die gute fachliche Praxis oder die Informationen durch das Umweltbundesamt (UBA). Auch eine Stärkung der bestehenden rechtlichen Regelungen wird von der LABO in einem Positionspapier gefordert. Denn bisher gibt es kein Instrument zur Kontrolle und Durchsetzung.
Funktionierende Böden sind ein wesentliches Element im Wasserhaushalt: Sie können Regenwasser rasch aufnehmen, große Mengen davon speichern und später den Pflanzen zur Verfügung stellen sowie die Grundwasserneubildung sicherstellen. Eingriffe des Menschen schädigen diese wertvollen Bodenfunktionen: Versickerung und Wasserspeicherfähigkeit werden im urbanen Raum mit hoher Flächeninanspruchnahme durch Siedlung und Verkehr reduziert und auf landwirtschaftlichen Flächen entstehen Gefügeschäden durch Verschlämmung und Bodenverdichtung. Die Kommission Bodenschutz beim Umweltbundesamt (KBU) empfiehlt seit langem die markante Minderung des unregulierten Flächenverbrauchs. Veröffentlicht in Position | Juli 2016.
Origin | Count |
---|---|
Bund | 67 |
Land | 37 |
Type | Count |
---|---|
Förderprogramm | 56 |
Taxon | 1 |
Text | 29 |
Umweltprüfung | 2 |
unbekannt | 13 |
License | Count |
---|---|
geschlossen | 42 |
offen | 56 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 101 |
Englisch | 11 |
Resource type | Count |
---|---|
Bild | 2 |
Dokument | 13 |
Keine | 69 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 101 |
Lebewesen & Lebensräume | 100 |
Luft | 101 |
Mensch & Umwelt | 101 |
Wasser | 100 |
Weitere | 97 |