API src

Found 284 results.

Versorgung mit öffentlichen, wohnungsnahen Grünanlagen 2016 (Umweltatlas)

Versorgungsgrad (qm pro Einwohner) von Wohnblöcken mit öffentlichen, wohnungsnahen Grünanlagen unter Berücksichtigung vorhandener privater und halböffentlicher Freiräume, Sachstand 2016

Versorgung mit öffentlichen, wohnungsnahen Grünanlagen 2020 (Umweltatlas)

Versorgungsgrad (qm pro Einwohner) von Wohnblöcken mit öffentlichen, wohnungsnahen Grünanlagen unter Berücksichtigung vorhandener privater und halböffentlicher Freiräume, Sachstand 2020

Ausbaugebiete Breitband (Landkreis Leer)

Aktion Glasfaser - Ausbaugebiete Breitband im Kreisgebiet Leer

CSP-Finance Financing Concentrating Solar Power in the Middle East and North Africa

Das Projekt "CSP-Finance Financing Concentrating Solar Power in the Middle East and North Africa" wird/wurde gefördert durch: Deutsches Zentrum für Luft- und Raumfahrt e.V.. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung.In June 2010, the DLR Group of Systems Analysis started an investigation about innovative financing of Concentrating Solar Power Plants (CSP) in countries of the Middle East and North Africa. We found a possible strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. The attached power point file shows some examples of time series of load and supply by CSP in the different load segments and shows the graphs used in the report. The attached Excel Sheet gives the time series of load and supply by CSP for the different load segments for a total reference year.

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Das Projekt "Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bonn, Institut für Organischen Landbau.Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

Soil-gas transport-processes as key factors for methane oxidation in soils

Das Projekt "Soil-gas transport-processes as key factors for methane oxidation in soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie.Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Transformation of organic carbon in the terrestrial-aquatic interface

Das Projekt "Transformation of organic carbon in the terrestrial-aquatic interface" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Cottbus-Senftenberg, Institut für Boden, Wasser, Luft, Lehrstuhl für Gewässerschutz, Forschungsstelle Bad Saarow.The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

IWaTec - Integrated Water Technologies

Das Projekt "IWaTec - Integrated Water Technologies" wird/wurde gefördert durch: Auswärtiges Amt / Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Zentrum für Wasser- und Umweltforschung.Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Phosphorus transport along soil pathways in forested catchments

Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Phosphorus transport along soil pathways in forested catchments" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Bodenkunde und Standortslehre.Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.

Geothermal Energy Supply in Chile, Phase 1: General Framework and Environmental Impact Assessment

Das Projekt "Geothermal Energy Supply in Chile, Phase 1: General Framework and Environmental Impact Assessment" wird/wurde ausgeführt durch: Hochschule Bochum, Bochum University of Applied Sciences, Zentrum für Geothermie und Zukunftsenergien.Climate protection aspects, commitments to the Kyoto-protocol and a guarantee of the national energy supply are the main drivers for this project of the Government of Chile. In the first phase of the consultation GZB will be the technical partner of a workgroup which is going to establish a government-guideline for the implementation of geothermal energy projects in Chile. The guideline will emphasize legal, financial and environmental aspects.

1 2 3 4 527 28 29