Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Flächen mit hoher Bedeutung für die Lebensraumfunktion für naturnahe und seltene Pflanzengesellschaften sind fast ausschließlich auf die Außenbereiche von Berlin beschränkt. Sie sind zusammen mit den Flächen mittlerer Bedeutung fast ausschließlich in Wäldern lokalisiert. Der überwiegende Teil, vor allem innerstädtische Flächen, besitzt nur eine geringe Bedeutung. 01.12.1 Lebensraumfunktion für naturnahe und seltene Pflanzengesellschaften der Böden Weitere Informationen Die Ertragsfunktion der Berliner Böden erreicht nur in wenigen Fällen eine hohe Bewertung. Dies sind vor allem Standorte mit guter Wasser- und Nährstoffversorgung. Ursache für den hohen Anteil der Flächen mit geringer Ertragsfunktion ist die Nährstoffarmut und die häufig schlechte Wasserversorgung der sandigen Böden sowie der anthropogenen Aufschüttungen in der Innenstadt. 01.12.2 Ertragsfunktion der Böden für Kulturpflanzen Weitere Informationen Eine hohe Puffer- und Filterfunktion besitzen lehmige Böden mit einer geringen Wasserdurchlässigkeit sowie Böden mit einer hohen effektiven Kationenaustauschkapazität. Diese Anforderungen erfüllen vor allem Böden auf den Geschiebemergelhochflächen des Teltows und Barnims. Eine nur geringe Fähigkeit Schadstoffe zu filtern und zu puffern besitzen die sandigen Böden des Urstromtales. 01.12.3 Puffer- und Filterfunktion der Böden Weitere Informationen Eine hohe Bewertung der Regelungsfunktion mit einer Austauschhäufigkeit des Bodenwassers von weniger als ein Mal pro Jahr erhalten zahlreiche naturnahe Bodengesellschaften. Darunter fallen alle grundwasserbeeinflussten Bodengesellschaften sowie Wälder mit einer hohen Verdunstungsleistung. Die geringe Bewertung ist auf den innerstädtischen Bereich, Industrieflächen und Gleisanlagen konzentriert. 01.12.4 Regelungsfunktion für den Wasserhaushalt der Böden Weitere Informationen Im Berliner Raum bestehen nur wenige Standorte mit besonderer Bedeutung für die Naturgeschichte. Sie beschränken sich auf naturnahe Böden, die sich meist in den Außenbereichen der Stadt befinden. Die häufig auch anthropogen stark veränderten Bodengesellschaften oder Böden aus Aufschüttungen besitzen als Archiv für die Naturgeschichte nur eine geringe Bedeutung. 01.12.5 Archivfunktion der Böden für die Naturgeschichte Weitere Informationen Flächen mit einer insgesamt hohen Leistungsfähigkeit sind überwiegend auf den Hochflächen im Norden und Süden, im Spandauer Forst und den Gosener Wiesen zu finden. Stark besiedelte Gebiete mit einer hohen Naturferne weisen dagegen eine geringe bis mittlere Leistungsfähigkeit auf. 01.12.6 Leistungsfähigkeit der Böden zur Erfüllung der natürlichen Bodenfunktionen und der Archivfunktion Weitere Informationen Das Potenzial des Bodens, Wasser zu verdunsten, steht in Abhängigkeit zur Flächennutzung, seinen bodenphysikalischen Eigenschaften, seines Wasserhaushalts und dem Anteil der versiegelten Fläche. Das daraus ermittelte Verdunstungspotenzial liefert ein Kriterium zur potenziellen Kühlleistung der Böden. 01.12.7.1 Verdunstungspotenzial der Böden auf Grundlage der Bodeneigenschaften Weitere Informationen Die Bodenkühlleistung beschreibt die Fähigkeit des Bodens, Sonnenenergie durch die Verdunstung von in ihm gespeicherten Wasser in latente Wärme umzuwandeln. Die Bodenkühlleistung ohne Berücksichtigung der Versiegelung stellt die Kühlleistung dar, die bei gleicher Landnutzung auf der vollständig unversiegelten Fläche zu erwarten wäre. 01.12.7.2 Kühlleistung der Böden ohne Berücksichtigung der Versiegelung Weitere Informationen Die Bodenkühlleistung beschreibt die Fähigkeit des Bodens, Sonnenenergie durch die Verdunstung von in ihm gespeicherten Wasser in latente Wärme umzuwandeln. Mit steigender Versiegelung nimmt die Bodenkühlleistung ab. 01.12.7.3 Kühlleistung der Böden mit Berücksichtigung der Versiegelung Weitere Informationen
<p>Wasserressourcen und ihre Nutzung</p><p>Im Jahr 2022 wurden in Deutschland 17,9 Mrd. m³, das sind 10,1 % des langjährigen potentiellen Wasserdargebots aus den Gewässern (Oberflächengewässer und Grundwasser) entnommen. Die verbleibende Wassermenge steht der Natur zur Verfügung. Allerdings wird darüber hinaus indirekt Wasser bei der Herstellung von Gütern – oft im Ausland genutzt: Dies bezeichnet man mit Deutschlands „Wasserfußabdruck“.</p><p>Wassernachfrage</p><p>Die Wasserentnahmen der Energieversorgung, des Bergbaus und verarbeitenden Gewerbes, der öffentlichen Wasserversorgung und der Landwirtschaft gehören zu den wesentlichen Wassernutzungen in Deutschland. Daten dazu veröffentlicht das Statistische Bundesamt alle drei Jahre in der Erhebung der nichtöffentlichen Wasserversorgung und Abwasserentsorgung (für 2022 veröffentlicht im Januar 2025) bzw. in der Erhebung der öffentlichen Wasserversorgung (für 2022 veröffentlich im August 2024). Gemäß dieser Datengrundlage haben die oben genannten Nutzergruppen im Jahr 2022 zusammen rund 17,9 Milliarden Kubikmeter (Mrd. m³) Wasser aus den Grund- und Oberflächengewässern entnommen (siehe Abb. "Wassergewinnung der öffentlichen Wasserversorgung, Bergbau, verarbeitendes Gewerbe, der Energieversorgung und der Landwirtschaft 2022“).</p><p>Die Wasserentnahmen der Wassernutzer 2022</p><p>Die Entnahmen der Energieversorgung sanken im Jahr 2013 deutlich. Dieser Trend hat sich in den Jahren 2016 und 2019 fortgesetzt.</p><p>Die Wasserentnahmen des Bergbaus und verarbeitenden Gewerbes sind seit 1991 rückläufig. Von 2019 zu 2022 sanken die Entnahmen in beiden Sektoren geringfügig.</p><p>Die Wasserentnahmen der öffentlichen Wasserversorgung waren von 1991 bis 2013 rückläufig, erhöhten sich dann jedoch in den Jahren 2016 und 2019. Im Jahr 2022 lagen die Entnahmen der öffentlichen Wasserversorgung geringfügig unter denen aus 2019.</p><p>Die statistisch erfassten Wasserentnahmen durch die Landwirtschaft befinden sich auf einem niedrigen, aber steigendem Niveau (siehe Abb. „Wassergewinnung der öffentlichen Wasserversorgung, Bergbau, verarbeitendes Gewerbe, der Energieversorgung und der Landwirtschaft“). Gegenüber 2020 hat sich die entnommene Wassermenge mehr als verdoppelt.</p><p>Die Wasserressourcen Deutschlands</p><p>Der Entnahmemenge von rund 17,9 Mrd. m³ steht in Deutschland ein langjähriges potentielles Dargebot von 176 Mrd. m³ Wasser (Zeitperiode 1991-2020) gegenüber. Das <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a> gibt an, welche Mengen an Grund- und Oberflächenwasser potentiell genutzt werden können.</p><p>Berechnet wird das Wasserdargebot als langjähriges statistisches Mittel für eine in der Regel dreißigjährige Zeitperiode sowie als sogenannte erneuerbare Wasserressource für Einzeljahre. Grundlage ist zum einen die gebietsbürtige (interne) Wasserressource, die sich aus der Wasserbilanz ergibt, das heißt aus der Differenz von Niederschlag und <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Evapotranspiration#alphabar">Evapotranspiration</a> (<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a> von Boden und Pflanzendecke) (siehe Tab. „Wasserbilanz für Deutschland“). Zum anderen addieren sich die Zuflüsse aus den Nachbarländern, die aus den Abflüssen grenznaher Pegel bestimmt werden, zu der internen Wasserressource.</p><p>Die erneuerbaren Wasserressourcen unterliegen beträchtlichen jährlichen Veränderungen, die um das potentielle Dargebot schwanken. Da die Bewirtschaftung der Gewässer sowohl durch kurzfristige Maßnahmen als auch durch langfristige Planungen gesteuert wird, sind beide Größen von Bedeutung (siehe Abb. „Änderung der erneuerbaren Wasserressourcen in Deutschland“). Die ausgewiesenen jährlichen gebietsbürtigen Abflussanteile, die oberirdisch das Bundesgebiet verlassen, geben in Verbindung mit dem Zufluss von Oberliegern zusätzlich einen Hinweis auf die tatsächlich in den Gewässern abgeflossenen Wassermengen. Diese können auf Grund der jahresübergreifenden Speichereffekte in Form von Schnee, Boden- und Grundwasser höher oder niedriger ausfallen als die erneuerbaren Wasserressourcen.</p><p>Das langfristige potentielle Wasserdargebot wird aktuell für die Zeitreihe 1991–2020 mit 176 Mrd. m³ angegeben. Im Vergleich zur vorherigen Zeitreihe 1961–1990 hat sich das langjährige potenzielle Wasserdargebot von 188 Mrd. m³ um 12 Mrd. m³ beziehungsweise um 6,4 % verringert.</p><p>Der Wassernutzungs-Index</p><p>Um die Auswirkungen der Wasserentnahmen auf die Gewässer beurteilen zu können, wird die Wassernachfrage dem <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a> gegenübergestellt. Übersteigen die Entnahmen 20 % des verfügbaren Wasserdargebotes, ist dies ein Zeichen von Wasserstress. Der Wassernutzungs-Index von Deutschland liegt seit 2007 unter dieser kritischen Marke (siehe Abb. „Wassernutzungs-Index“). 2022 betrug er 10,1 %.</p><p>Aufgrund des hohen Rückgangs der Wasserentnahmen durch die Energieversorger sank der Wassernutzungs-Index 2013 deutlich auf 14,3 %. Durch weitere Rückgänge bei den Entnahmen durch Bergbau, verarbeitendes Gewerbe und die Energieversorgung hat sich dieser abnehmende Trend auch 2016, 2019 und 2022 fortgesetzt. Die zeitweise Zunahme der Wasserentnahmen durch die öffentliche Wasserversorgung und steigenden Entnahmen durch die Landwirtschaft fielen geringer aus als die Rückgänge in den anderen Sektoren.</p><p>Das Gesamtvolumen der Wasserentnahme 2022 von 17,9 Mrd. m³ entspricht 10,1 % des langjährigen potentiellen Wasserdargebots. 89,9 % des Wasserdargebots standen den Ökosystemen in Flüssen und Seen zur Verfügung oder waren im Grundwasser gespeichert. Wie sich im Jahr 2022 die Anteile der Hauptwassernutzungen bezogen auf das potenzielle Dargebot verteilen, zeigt die Abbildung „Wasserdargebot und Wassernutzung 2022“.</p><p>Deutschlands „Wasserfußabdruck“</p><p>Wer trinkt, kocht, sich oder seine Kleidung wäscht und die Klospülung betätigt, benötigt Wasser – das ist die direkte Wassernutzung. Auch bei der Herstellung von Lebensmitteln, Kleidung, PKW oder Mobiltelefonen wird Wasser genutzt – das ist der indirekte Wasserverbrauch. Die in Produkten sozusagen versteckte Wassermenge wird häufig als virtuelles Wasser bezeichnet. Es verbindet jede Nutzerin und jeden Nutzer eines Lebensmittels oder Produktes mit der Region oder den Regionen, wo es erzeugt wird.</p><p>Wie viel an Wasser eine Person nun tatsächlich – also direkt und virtuell – benötigt, erfassen Fachleute mit dem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Wasserfußabdruck“. Es gibt ihn auch für Produkte, Unternehmen oder Länder (siehe Themenseite<a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserfussabdruck">„Wasserfußabdruck“</a>). Der Wasserfußabdruck Deutschlands beträgt insgesamt rund 219 Mrd. m³ pro Jahr (<a href="https://www.umweltbundesamt.de/publikationen/konzeptionelle-weiterentwicklung-des">siehe UBA-Texte 44/2022</a>). Dies entspricht 7.200 Liter täglich pro Person.</p>
Der Konsum von Waren und Dienstleistungen verursacht in der Regel entlang der Wertschöpfungsketten erhebliche umweltbezogene Auswirkungen einschließlich solcher auf die Ressource Wasser. Als einer der fünf größten Konsumierenden-Märkte weltweit ist Deutschland somit mitverantwortlich für wasserbezogene Umweltwirkungen. Eines der Hauptziele des vorliegenden Forschungsvorhabens war es daher, den durch Konsum verursachten Wasserverbrauch von Deutschland anzunähern und regional aufzuschlüsseln. Die daraus resultierende sogenannte Wasserfußabdruck-Sachbilanz wurde anschließend vor dem Hintergrund der Übernutzung der Wasserressourcen in den Herkunftseinzugsgebieten charakterisiert, woraus sich Deutschlands Wasserfußabdruck ergibt. Der mit Abstand überwiegende Anteil an Deutschlands Wasserfußabdruck manifestiert sich in Regionen im Ausland. Deutschlands eigener Anteil am Wasserfußabdruck ist nahezu vernachlässigbar. Regionen, in denen der Wasserfußabdruck von Deutschland erheblich ist, sind bspw. Südeuropa, Nordafrika, Südasien oder Nordamerika. Auf Grundlage der im Forschungsvorhaben gesammelten Erkenntnisse wurden Empfehlungen abgeleitet, um Deutschlands konsuminduzierten Wasserfußabdruck zu reduzieren und im Rahmen nationaler Ressourcenberichterstattung zu erfassen. Darüber hinaus wurden methodische Limitierungen zusammengefasst und erforderliche Verbesserungen zur robusten Erfassung des konsuminduzierten Wasserfußabdrucks von Deutschland identifiziert. Quelle: Forschungsbericht
<p>Wassernutzung privater Haushalte</p><p>Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt.</p><p>Direkte und indirekte Wassernutzung</p><p>Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter<a href="https://www.umweltbundesamt.de/daten/wasserwirtschaft/oeffentliche-wasserversorgung">Trinkwasser</a>, etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln.</p><p>Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“).</p><p>Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde.</p><p>Deutschlands Wasserfußabdruck</p><p>Das virtuelle Wasser ist Teil des<a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserfussabdruck">„Wasserfußabdrucks“</a>, der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen:</p><p><strong>Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³)</strong></p><p>Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %.</p><p>Grünes, blaues und graues Wasser</p><p>Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält.</p><p>Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch:</p><p>Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).</p>
In der Montessori-Grundschule liegt ein besonderer Schwerpunkt auf der nachhaltigen Entwicklung. Die Schülerinnen und Schüler erhalten im Schulalltag auf vielfältige Weise Zugang zu der Thematik des Umwelt- und Klimaschutzes. Die Clara-Grunwald-Grundschule trägt das Siegel „Faire Schule“, welches dem Lernort Fairness zur Umwelt und Klima, Fairness im Umgang miteinander sowie Fairness zu Menschen rund um den Globus bescheinigt. Klimafreundliche Ernährung im Schulcafé Das Schulcafé wird von den Kindern und Erwachsenen gleichermaßen betrieben. Im Schuljahr 2017/2018 befassten sich die Schülerinnen und Schüler im Rahmen eines Wettbewerbs mit klimafreundlicher Ernährung. Im Zuge des Projekts, welches einen vierten Preis gewann, wurden unter anderem Kriterien zum Einkauf von Lebensmitteln für das Schulcafé bestimmt, welche bis heute eingehalten werden. So werden dort vornehmlich regionale und biologische Produkte angeboten, die Tier- und Umweltschutzstandards entsprechen. Die Teilnehmerinnen und Teilnehmer des Projekts setzten sich intensiv mit dem Zusammenhang zwischen Ernährung und Klima auseinander. In breit angelegten Workshops wurden die Klimabilanzen verschiedener Nahrungsmittel miteinander verglichen. Zudem organisierte die Schule einen veganen Kochtag mit den Eltern. Das Projekt setzte somit nicht nur die Weichen für eine möglichst klimafreundliche Ernährung in der Schule, sondern vermittelte jedem einzelnen die Möglichkeiten, den eigenen CO 2 -Fußabdruck mit einfachen Maßnahmen zu verringern. Die Relevanz eines bewussten Konsums für den Klimaschutz wird den Schülerinnen und Schülern der Clara-Grunwald-Grundschule auf vielfältige Weise nähergebracht. In diversen, gezielten Projekten befassten sich die verschiedenen Schulklassen mit relevanten Teilaspekten der Wirkung des menschlichen Konsumverhaltens auf Umwelt und Klima – etwa dem Thema des virtuellen Wassers, der Verschmutzung der Gewässer oder des Fleischkonsums. 2020 entwickelten die Schülerinnen und Schüler durch ihr angeeignetes Wissen zwölf Klimatipps zum Klimaschutz durch weniger Konsum im Schulalltag. Das Projekt ist mit der Ausformulierung der Klimaschutz-Tipps jedoch keinesfalls abgeschlossen: Vielmehr sollen die Erkenntnisse von allen verinnerlicht und sowohl im Schulalltag als auch im privaten Leben möglichst umgesetzt werden. Durch selbstständige Annäherung an diesen zentralen Klimaschutzansatz verinnerlichen die Schülerinnen und Schüler die Prinzipien und fungieren in ihrem eigenen Umfeld als Multiplikatoren. Die Schülerinnen und Schüler der Clara-Grunwald-Grundschule engagieren sich für die Artenvielfalt in der Hauptstadt – und dies nicht nur auf dem eigenen Schulhof, sondern ebenfalls in der unmittelbaren Nachbarschaft der Schule. So säen die Kinder der Grundschule etwa alle drei Jahre insekten- und bienenfreundliche Wildblumensamen auf dem Ida-Wolff-Platz. Auf dem Schul- und Hortgelände wurden zudem zwei Blumen- und Naschgärten angelegt. Kirsch- und Apfelbäume sowie Weinreben und Johannisbeersträucher sind ebenfalls auf dem Schulgelände zu finden. Direkt neben der Schule befindet sich zudem das Robinienwäldchen. Der rund 5.500 Quadratmeter große Naturerfahrungsraum bietet weitestgehend naturbelassene Flächen, welche Kindern zum spielen und erkunden viel Freiraum lassen. Mitunter verlagert sich der Unterricht in das anliegende Wäldchen, auf den Schulhof oder den bepflanzten Ida-Wolff-Platz. Die Kinder der Clara-Grunwald-Grundschule erhalten somit auf vielfältige Art und Weise Zugang und Bindung zur Natur. Auf dem gesamten Schulgelände wird der Abfall getrennt. Zudem werden die Kinder durch regelmäßige Müll-Sammelaktionen auf den Grünflächen Berlins für den respektvollen Umgang mit der Natur durch Sauberkeit sensibilisiert. Die enorme Belastung der Umwelt durch die massive Abfallproduktion des menschlichen Konsums wird darüber hinaus in diversen Projekten hervorgehoben. Ökologisches Schulessen | Abfalltrennung | Schulgarten | Schulprogramm | Projekte Die Clara-Grunwald-Grundschule ist eine öffentliche Halbtagsgrundschule, welche ergänzende Betreuungsangebote am Nachmittag bietet. Rund 300 Kinder werden in der Kreuzberger Schule von 33 Lehrkräften betreut und unterrichtet. Die Bildungsvermittlung stützt sich auf die Montessori-Pädagogik. Die Schülerinnen und Schüler der Clara-Grunwald-Grundschule lernen jahrgangsübergreifend. In jeder Lerngruppe finden sich drei Jahrgänge wieder (1, 2 und 3 oder 4, 5 und 6). Durch die altersgemischten Gruppen lernen die Kinder voneinander, wiederholen Erlerntes und finden sich mitunter selbst in der Rolle des Wissensvermittlers wieder. Weiteres Kernstück der Bildungsarbeit in der Grundschule ist – der Montessori-Pädagogik folgend – die tägliche, zweistündige Freiarbeit. In dieser Zeit lernen die Kinder selbstständig und frei. 3. Platz beim Wettbewerb Berliner Klima Schulen 2018 Siegel Faire Schule seit 2018 4. Platz beim Wettbewerb Berliner Klima Schulen 2017 Bild: ridofranz/Depositphotos.com Weitere engagierte Schulen in Friedrichshain-Kreuzberg Übersicht: Diese Friedrichshainer und Kreuzberger Schulen engagieren sich besonders im Klima- und Umweltschutz. Weitere Informationen Bild: Goodluz/Depositphotos.com Handlungsfelder im Klimaschutz Ressourcenschutz, Nachhaltigkeit, Klimabildung: In diesen Bereichen engagieren sich Schülerinnen und Schüler aller Altersgruppen um nachhaltige Verbesserungen im Klimaschutz. Weitere Informationen
<p>Wasser bewirtschaften</p><p>Als lebenswichtiges öffentliches Gut unterliegt Wasser umfassenden Regelungen zur Bewirtschaftung. Dabei sind Wassermengen- ebenso wie Wasserqualitätsaspekte zu berücksichtigen. Umfassende Vorgaben zur Wasserbewirtschaftung leiten sich aus der EU-Wasserrahmenrichtlinie ab, die die Erstellung von Maßnahmenprogrammen und Bewirtschaftungsplänen und deren regelmäßige Aktualisierung vorschreibt.</p><p>Mit Blick auf die Wassermenge ist Deutschland in einer vergleichsweise komfortablen Situation: Von dem verfügbaren Wasserdargebot wird nur ein Teil genutzt. Es gibt ausreichend Wasser, um die Trinkwasserversorgung überall sicherzustellen.<br>Trotzdem empfiehlt sich ein sorgsamer Umgang mit der Ressource Wasser. Neben den Wasserentnahmen in Deutschland wird auch im Ausland Wasser für von uns eingeführte Produkte und Güter genutzt. Diese indirekte Wassernutzung im Ausland (auchWasserfußabdruckoder virtuelles Wasser genannt) übersteigt unsere direkte Wassernutzung bei weitem.<p>In Ländern mit Wasserstress und Wasserknappheit sind<strong>Wassersparmaßnahmen</strong>und alternative Wasserressourcen von deutlich höherer Relevanz als in Deutschland. Die Nutzung von aufbereitetem Abwasser (sogenannte<strong>Wasserwiederverwendung</strong>, englisch „Water Reuse“) für die landwirtschaftliche Bewässerung kann dabei eine hilfreiche Maßnahme darstellen, bedarf jedoch anspruchsvoller Anforderungen, um den Umwelt- und Gesundheitsschutz sicherzustellen. Denn auch behandeltes Abwasser enthält noch chemische Schadstoffe und Krankheitserreger.<strong>Mikroverunreinigungen</strong>wie zum Beispiel Arzneimittel-, Pestizid- oder Chemikalienrückstände können über das behandelte Abwasser in die Umwelt, insbesondere in Boden und Gewässer, eingetragen werden. Gegenwärtig sind viele dieser Stoffe noch nicht geregelt. Vorsorgende Maßnahmen, strategische Ansätze und angepasste Regelungen sind nötig, um den Eintrag von Mikroverunreinigungen in die Gewässer zu vermeiden und reduzieren.</p><p>Neben dem Ordnungsrecht spielen<strong>ökonomische Instrumente</strong>(Preise, Gebühren, Abgaben) bei der Wasserbewirtschaftung eine wesentliche Rolle. Zusätzlich bedarf es<strong>Nachhaltigkeitskonzepte</strong>für die langfristige Sicherung der Ressource Wasser.<br>Auch die deutsche Wasserwirtschaft steht vor neuen Herausforderungen, wie dem Klimawandel, demografischen Entwicklungen und technologischen Neuerungen, die umfassende Veränderungen mit sich bringen. Diese und weitere zukunftsorientierte Fragestellungen werden imNationalen Wasserdialogadressiert.
Im Rahmen des vom Bayerischen Staatsministerium für Umwelt und Verbraucherschutz geförderten und vom Bayerischen Landesamt für Umwelt getragenen Verbundprojektes VieWBay geht es um die präzise Berechnung und Dokumentation der räumlichen und zeitlichen Dynamik von Wasser- und Stoffströmen des hydrologischen Raums Bayern. Die VISTA GmbH generiert hierzu bayernweit hochaufgelöste, flächendeckende Zeitserien von Umweltinformationen. Diese Informationen werden zum Großteil aus den Copernicus Umweltsatelliten Sentinel 1A/B sowie Sentinel 2A/B und weiteren kostenlos verfügbaren Fernerkundungssatelliten der LANDSAT Serie abgeleitet. Die Umweltparameter und deren Zeitreihen werden mit einer räumlichen Auflösung von 10 m bzw. schlagbezogen für die größtmögliche Zahl von beobachteten Zeitpunkten für alle ackerbaulich genutzten Flächen zur Verfügung gestellt.
Origin | Count |
---|---|
Bund | 35 |
Land | 8 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 25 |
Text | 13 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 15 |
offen | 27 |
Language | Count |
---|---|
Deutsch | 36 |
Englisch | 9 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 3 |
Dokument | 6 |
Keine | 14 |
Multimedia | 1 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 36 |
Lebewesen und Lebensräume | 38 |
Luft | 28 |
Mensch und Umwelt | 42 |
Wasser | 42 |
Weitere | 42 |