API src

Found 1778 results.

Related terms

Klimaanalysekarten 2022 (Umweltatlas)

Die Klimaanalysekarten sind Ergebnis einer durchgeführten gesamtstätischen Klimamodellierung im Land Berlin. Sie bilden den stadtklimatischen Ist-Zustand an einem durchschnittlichen autochthonen Sommertag ab. Die Klimaanalysekarten umfassen neben verschiedenen klimatischen Parametern, bestehend aus (1) dem bodennahen Windfeld und Kaltluftvolumenstromdichte, (2) die Luft- und (3) Oberflächentemperatur, (4) die nächtliche Abkühlung, sondern auch zwei thermische Bewertungsindizes, bestehend aus (5) dem PET und (6) dem UTCI. Die Zusammenfassung der Erkenntnisse aus der Klimaanalyse erfolgt in der (7) Klimaanalysekarte. Die Klimaanalysekarte ermöglicht es, die einzelnen Bereiche der Stadt nach ihren unterschiedlichen klimatischen Funktionen, d.h. ihrer Wirkung auf andere Räume, abzugrenzen. Die Karten der Klimaanalyse werden teilweise in einer Rasterdarstellung mit einer hohen räumlichen Auflösung von 10 m x 10 m sowie aggregiert auf etwa 25.000 Block- und Blockteilflächen angeboten.

Optimierung einer betrieblichen Biogasanlage zur Erzeugung von Elektro- und Thermoenergie aus Guelle und nachwachsenden Rohstoffen

Die 1993 in Kraft getretene TA Siedlungsabfall schreibt fuer anfallende Bioabfaelle eine biologische Behandlung durch die entsorgungspftichtige Koerperschaft vor. Eine weitgehende Inertisierung wird bei gleichzeitigem Energiegewinn mit Hilfe von Biogasverfahren erreicht. Diese regenerative Energieerzeugung soll durch Einsatz nachwachsender Rohstoffe als Zuschlagstoff von unregelmaessig anfallenden Abfallzuschlagstoffen unabhaengig werden. Die nachwachsenden Rohstoffe koennen im Rahmen des Flaechenstillegungsplanes auf stillgelegten Iandwirtschaftlichen Flaechen angebaut und zur Verbesserung der Lagerfaehigkeit sowie zur Erhoehung der Biogasausbeute siliert werden. Durch Anreicherung von Guelle mit Lebensmittelabfaellen laesst sich von einer Freiland-Biogasanlage die Raumbelastung von 1,5 auf 7 kg OTS/m3 steigern und die erzeugte Elektro- und Thermoenergie um etwa das Sechsfache erhoehen. Die aus zwei einstufigen 500 mn Biogasreaktoren bestehende Anlage entsorgt 50 mn/d Guelle und 10 mn/d kommunale und gewerbliche Abfaelle. Zur weiteren Optimierung der Guelleanreicherung sowie zur kontinuierlichen Auslastung der Anlage und Energieerzeugung werden als Zuschlagstoffe nachwachsende Rohstoffe wie Knaulgras und geeignete Silierungsverfahren untersucht. Die Freiland-Biogasanlage ist von der Fa. Biophil durch eine Abfallvorbehandlungsanlage erweitert worden und wird in Kooperation mit der TFH weiter optimiert. Die Versuche zur Auswahl und Vorbehandlung der Guellezuschlagstoffe werden in Biogaslaboranlagen durchgefuehrt und ausgewaehlte Ansaetze in der Freilandanlage ueberprueft.

Optimierung von Waermeerzeugungsanlagen

Im Rahmen des Projektes wurde die Struktur der Waermegestehungskosten, des Primaerenergiebedarfs und der Treibhausgasemissionen, bewertet im CO2-Massstab fuer Waermeerzeugungsanlagen, wie sie fuer Contractingloesungen typisch sind untersucht und Optimierungsmoeglichkeiten dargestellt.

Energieeffiziente Bürogebäude

Die kombinatorische Vielfalt der Einflussgrößen auf den Energieverbrauch von Gebäuden verursacht meistens Unsicherheit in der Planung. Ziel dieses Projektes ist es, für Architekten und Fachplaner eine umfassende Matrix zu erstellen, die es erlaubt, die Auswirkungen von Planungsschritten auf den Energiehaushalt und die Behaglichkeit von Gebäuden hinreichend genau zu bewerten und Alternativen gegeneinander abzuwägen. Anhand eines standardisierten Bürogebäudes werden unter Berücksichtigung der äußeren und inneren Lasten und für definierte zu erreichende Raumzustände alle wichtigen Faktoren wie z.B. der Anteil an thermisch aktiver Masse oder der Grad an Verglasung variiert. Die zur Anwendung kommende Methode der thermischen Gebäudesimulation und Strömungssimulation erlaubt eine sehr differenzierte Betrachtungsweise.

Wärmekataster Wärmebedarf Hamburg

Der Datensatz „Wärmebedarf“ des Wärmekatasters stellt den Nutzwärmebedarf (Abk.: NWB - Wärmebedarf für Heizung und Warmwasser) des Hamburger Gebäudebestandes in aggregierter Form dar. Der (Nutz-) Wärmebedarf des Hamburger Gebäudebestands wird auf Baublock-Ebene und auf Cluster-Ebene angezeigt. Zudem kann man zwischen zwei Sanierungsstufen wählen: 1. „Unsaniert“ impliziert einen Gebäudezustand, der keine wärmetechnischen Modernisierungen aufweist (abgesehen von einem einfachen Fenstertausch) 2. „Saniert“ nimmt eine konventionelle Sanierung aller Gebäude (nach ENEV 2014) an. Die Darstellung und Kategorisierung kann wie folgt gewählt werden: 1. Gesamtbedarf aller Wohn- und Nichtwohngebäude der Einheit Cluster oder Baublock; in Megawattstunden pro Jahr [MWh/a] 2. Spezifischer Wärmebedarf der Wohngebäude (Cluster); in Kilowattstunden pro Quadratmeter Nutzfläche und Jahr [kWh/m² a] 3. „Wärmedichte im Baublock“; Gesamtbedarf aller Wohn- und Nichtwohngebäude (wie Nr.1) dividiert durch die Grundfläche des jeweiligen Baublocks; in Kilowattstunden pro Quadratmeter Baublockgrundfläche und Jahr [kWh/m² a] Detaillierte Informationen können Sie dem Wärmekataster Handbuch entnehmen.

Tunnelgeothermieanlage Rosensteintunnel in Stuttgart + Messprogramm

Die Landeshauptstadt Stuttgart (Baden-Württemberg) plant, in der Nähe des Stuttgarter Zoos 'Wilhelma' eine Tunnelgeothermieanlage in den neu zu errichtenden Rosensteintunnel zu implementieren. Ziel des Vorhabens ist, die geothermische Wärme und die Abwärme des Straßenverkehrs zum Beheizen des benachbarten, neu zu errichtenden Gebäudes (z.B. Elefantenhaus), zur Wassertemperierung der Elefantenduschen und der Außenbecken im Zoo 'Wilhelma' zu nutzen sowie gleichzeitig die Tunnelbetriebstechnik zu kühlen. Übertragen wird die Wärme durch neuartige fluiddurchflossene Absorberleitungen, die in dem Teil des Tunnels zwischen dessen Innen- und der Außenschale verlegt werden. Die Wärmetauscherflüssigkeit nimmt die in der Erde und die in der Tunnelluft enthaltene Wärme auf und gibt diese über eine Wärmepumpe reguliert ab. Der jährliche Wärmebedarf für das Elefantenhaus wird mit 1.382 Megawattstunden und der jährliche Strombedarf für die Kühlung der Tunnelbetriebstechnik mit 219 Megawattstunden prognostiziert. Die zu erwartende CO2-Minderung durch die Versorgung des Elefantenhauses und die Eigenversorgung des Tunnels beträgt jährlich insgesamt 201 Tonnen CO2 bzw. 51 Prozent der Gesamtemissionen. Darüber hinaus werden weitere Luftschadstoffe, wie Staub, Kohlenmonoxid und flüchtige organische Kohlenwasserstoffe (VOC), vermieden.

Elastokalorik für eine effiziente Klimatechnik, Teilvorhaben: Optimierung der elastokalorischen Materialien

Elastokalorik für eine effiziente Klimatechnik, Teilvorhaben: Realisieren des Seelecke-Konzeptes

Differenz der Wärmeleitfähigkeit BB bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP)

Der Datensatz beinhaltet Daten vom LBGR über die Differenz der Wärmeleitfähigkeit Brandenburgs bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP) und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Es werden die mittlere Wärmeleitfähigkeit mit Wassergehalten als Differenz aus Feldkapazität (FK) und Permanentem Welkepunkt (pF 4,2) dargestellt. Sie veranschaulicht die wassergehaltsabhängigen Unterschiede zwischen saisonal höchster und niedrigster Wärmeleitfähigkeit und vermittelt einen Eindruck der zu erwartenden jahreszeitlichen Dynamik der Wärmeleitfähigkeit an einem Standort. Die Differenzen werden in folgende Klassen unterteilt: Differenz λFK - λPWP [W/m*K] sehr gering ≤ 0,2 gering 0,21 - 0,40 mittel 0,41 - 0,65 hoch 0,66 - 0,91 sehr hoch 0,92 - 1,20 Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Mittlere Wärmeleitfähigkeit BB

Die Serie beinhaltet Daten vom LBGR über die Mittlere Wärmeleitfähigkeit Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Die Karten basieren auf den Legendeneinheiten der Bodenübersichtskarte (BÜK300) mit entsprechender Zuordnung von parametrisierten Flächenbodenformen. Diese stellen je Legendeneinheit eine Bodenformengesellschaft dar. Die einzelnen Flächenbodenformen (FBF) wurden mit bodenphysikalischen Kennwerten belegt, die durch Gelände-und Laboruntersuchungen bestimmt wurden. Dazu wurden für gleiche Horizont-Substrat-Kombinationen (HSK) die Kennwerte Bodenart Trockenrohdichte, Gesamtporenvolumen, Wassergehalt bei Feldkapazität (FK) und Permanentem Welkepunkt (PWP), Humusgehalt statistisch abgeleitet (i.d.R. Medianwerte). Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden. Zur Berechnung der Wärmeleitfähigkeit wurde die Pedotransferfunktion (PTF) nach Markert et al. (2017) unter Berücksichtigung der oben genannten Kennwerte verwendet. Diese PTF basiert auf umfangreichen Messungen der Wärmeleitfähigkeit für ein weites Spektrum der in Brandenburg vorkommenden Böden. Für jede HSK ist die Wärmeleitfähigkeit für die Wassergehalte bei FK und PWP bis in eine Tiefe von 2m berechnet worden. Bei HSK im Einflussbereich des Grundwassers (Gr-Horizonte) wurde die Wärmeleitfähigkeit für volle Wassersättigung veranschlagt. Auf Grund der Parametrisierung der PTF für ausschließlich mineralische Böden wurden folgende Anpassungen vorgenommen: für organische HSK (Torfe) wurde mit einer Wärmeleitfähigkeit von λFK = 0,4 W/m*K und λPWP = 0,2 W/m*K gerechnet (Vgl. Messwerte von Markert et al. 2017; VKR 1.32 AG Boden 2010), für tonige Böden sind auf Grund der geringen Datenlage die Parameter der lehmigen Böden verwendet worden, der Humusgehalt wurde durch λhumos = λmineralisch – Humusgehalt*0,05 berücksichtigt. Für HSK mit anthropogenem Ausgangsgestein war auf Grund unzureichender Messwerte und fehlender Angaben in der Literatur keine Berechnung der Wärmeleitfähigkeit möglich. Die Wärmeleitfähigkeit je Flächenbodenform ist in diesem Fall als gewichtetes harmonisches Mittel unter Berücksichtigung der Mächtigkeit aller Horizonte ermittelt worden. Zur besseren Übersichtlichkeit und Interpretierbarkeit der Ergebnisse wurden die gewichteten harmonischen Mittelwerte der Wärmeleitfähigkeiten in die folgenden 6 Klassen eingeteilt: Wärmeleitfähigkeit [W/m*K] extrem gering ≤ 0,4 sehr gering 0,41 - 0,90 gering 0,91 - 1,40 mittel 1,41 - 1,90 hoch 1,91 - 2,40 sehr hoch 2,41 - 2,90 Für die grafische Darstellung als Karte wurden je Legendeneinheit (LE) die Flächenbodenformen mit gleicher Wärmeleitfähigkeitsklasse zusammengefasst, deren Flächenanteile nach Tab. 66 (AG Boden 2005) je LE addiert und als eine aggregierte dominante, sowie eine aggregiert subdominante λ-FBF ausgewiesen. Bei einigen wenigen Flächen mit sehr heterogener Zusammensetzung der Flächenbodenformen sind drei λ-FBF angegeben.

1 2 3 4 5176 177 178