Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.
Das Schwerpunktprogramm 'Polymer-basierte Batterien' (SPP 2248) widmet sich Batterien auf Polymerbasis, bei denen (organische) redoxaktive Polymere als aktive Materialien für die jeweilige Kathode oder Anode verwendet werden. Bei 'all-polymer'-Batterien basieren beide Elektroden auf Polymermaterialien. Diese Batterien sind interessante Systeme aufgrund ihrer vielversprechenden Eigenschaften, zu denen schnelles Laden, die Möglichkeit zur Herstellung flexibler Elektroden, die Abwesenheit von Schwermetallen sowie der geringe Energiebedarf für die Materialsynthese und die Herstellung von Batterien gehören. Die wissenschaftlichen Projekte befassen sich mit der Modellierung zur Identifizierung vielversprechender neuer Materialien, dem Verständnis der auftretenden (Redox-) Prozesse sowie möglicher Nebenreaktionen, dem Design und der Synthese redoxaktiver Polymere, der Entwicklung neuartiger Elektrolyte sowie der detaillierte Charakterisierung (auch in situ und in Operando-Techniken). Die zentralen Aktivitäten des Schwerpunktprogramms, die in diesem Projekt behandelt werden, fördern den wissenschaftlichen Austausch zwischen allen Projekten und Teilnehmern des SPP, beispielsweise bei verschiedenen Netzwerkveranstaltungen des Schwerpunktprogramms. Ein wichtiges Ziel des Schwerpunktprogramms ist auch die Förderung des wissenschaftlichen Nachwuchses, insbesondere von Wissenschaftlerinnen. Daher werden Doktoranden sowie die jungen PIs, die bereits an Projekten der SPP beteiligt sind, durch Anschubfinanzierungs- und Mentoringprogramme unterstützt. Dieses Projekt wird auch genutzt, um die (internationale) Sichtbarkeit des Schwerpunktprogramms zu fördern. Darüber hinaus werden in diesem zentralen Projekt Standardmaterialien und -elektroden bereitgestellt, die sowohl für Charakterisierungsprojekte als auch für Benchmark-Systeme verwendet werden.
This report is an update of the country profiles that ECOFYS has produced together with national experts since 2004. They contain detailed information about policies applied in the electricity, heat and transport sector as well as deployment and potential data. The core objective of the project led by FRAUNHOFER-ISI is to assist Member State governments in implementing the Renewable Energy Directive and to guide a European policy for RES in the mid- to long-term. Publications so far include: - 'Indicators assessing the performance of renewable energy support policies in 27 Member States' (2011 update upcoming) - 'Review report on support schemes for renewable electricity and heating in Europe' - 'Design options for cooperation mechanisms between Member States under the Renewable Energy Directive' - 'A smart power market at the centre of a smart grid'. Learn more about the project on http://www.reshaping-res-policy.eu/
Um die gesellschaftlichen Ziele im Hinblick auf eine nachhaltige Entwicklung unserer Umwelt zu ereichen, wissen wir, dass die Energieeffizienz und Ökologie eines jeden Architekturprojektes heute ganz oben auf der Agenda aller Planenden stehen (müssen). Man könnte meinen, dass das Einbeziehen der Aspekte zur Ökologie und Energieperformance zu einer ganz neuen architektonischen Formensprache führen müsste. Dies ist aber bis heute kaum der Fall. Abgesehen von einigen wenigen Beispielen, entstehen in der Regel entweder die in der allgemeinen architektonischen Fachwelt eher verpönten Öko-Häuser' - meist Einfamilienhäuser mit einer zusammenhangsloser Zusammensetzung von Holzelementen, dicker Wärmedämmung, Sonnenkollektoren und einem aufgesetzten Wintergarten. Oder es wird behauptet, dass die Überlegungen zur Ökologie und Energieeffizienz im Entwurf so gut versteckt sind, dass man davon (architektonisch) nichts mehr merkt. Dieses Forschungsprojekt beschäftigt sich mit folgenden Fragestellungen; wie ausgeprägt ist die Beziehung zwischen der Form und der Energieperformance eines Gebäudes? Führt das Einbeziehen solcher Überlegungen zwangsläufig zu einer neuen Formensprache? Oder es ist denkbar, die Energieeffizienz und Nachhaltigkeit eines Gebäudes unabhängig von seiner Architekturstilrichtung und ohne Auswirkungen auf den gewollten architektonischen Eindruck so zu optimieren, dass die o.a. gesellschaftlichen Ziele trotzdem erreicht werden können?
Die ökonomische und ökologische Energiebereitstellung stellt eine zentrale gesellschaftliche Herausforderung dar. Diese wird durch die steigenden Umweltbelastungen bei gleichzeitig wachsendem weltweitem Energiebedarf und zunehmender Ressourcenverknappung bedingt. Für mobile Antriebe nimmt insbesondere die Verminderung des bei der motorischen Verbrennung entstehenden Treibhausgases CO2 sowie der Schadstoffemissionen ein wichtiges Ziel ein. Dies sind zum Beispiel Stickoxide (NOx), Kohlenmonoxid (CO), unverbrannte Kohlenwasserstoffe (uHC) und Ruß, die erheblich zur städtischen und regionalen Luftverschmutzung beitragen. Zur Realisierung von hohen Wirkungsgraden bei gleichzeitig niedrigen Schadstoffemissionen untersucht die FOR2401 die zukunftsträchtige Niedertemperaturverbrennung (NTV). Die NTV kann sowohl auf Ottomotoren (Gasoline Controlled Auto Ignition, GCAI) als auch auf Dieselmotoren (Premiexed Charge Compression Igniton) angewendet werden und zeichnet sich als ein Brennverfahren aus, welches das Potential bietet, bereits innermotorisch die Emissionen deutlich zu reduzieren. Die Komplexität der Prozessführung ist einer der wesentlichen Gründe, welcher die technische Anwendung der NTV aktuell verhindert. Der Ablauf der NTV wird maßgeblich von lokalen thermodynamischen Zuständen und strömungsmechanischen Effekten bestimmt. Die Zeitskalen der hierbei auftretenden Abläufe sind kleiner als die des Verbrennungszyklus und können deshalb nicht mit einer dem Stand der Forschung entsprechenden zyklusbasierten Regelung beeinflusst werden. Um eine hinsichtlich Stabilität, Wirkungsgrad und Schadstoffemissionen verbesserte Prozessführung zu ermöglichen, werden im Rahmen der Forschergruppe Multiskalenregelungskonzepte untersucht, welche Neuland darstellen. Zur erfolgreichen Realisierung der Multiskalenregelung müssen grundlegende Forschungsfragen aus den Disziplinen Chemie, Verbrennungstechnik, Motorenforschung, Regelungstechnik und Numerik geklärt werden. Aus diesem Grund setzt die Forschergruppe auf einen stark vernetzten, interdisziplinären Ansatz. Innerhalb der FOR2401 soll ein detailliertes physikalisch-chemisches Prozessverständnis der NTV und der zugehörigen Beeinflussungsmöglichkeiten entwickelt werden, wodurch eine Beschreibung in Form von mathematischen Modellen ermöglicht wird. Aufbauend auf diesen Erkenntnissen werden maßgeschneiderte regelungstechnische Methoden entwickelt, die auf Echtzeitoptimierung basieren und die Kontrolle auf einer kleineren als der aktuell möglichen Zeitskala erlauben. Die Forschung erfolgt im engen Schulterschluss zwischen Natur- und Ingenieurswissenschaftler/innen der Universität Bielefeld, der Universität Freiburg und der RWTH Aachen University.
Die ubiquitäre Kontamination der Umwelt durch Mikroplastik (MP), die damit verbundenen potenziellen Risiken für Ökosysteme und letztendlich für unsere Gesundheit ist in letzter Zeit sehr stark in den Blickpunkt des öffentlichen und wissenschaftlichen Interesses gerückt. Das junge Forschungsfeld MP hat sich bis dato vorwiegend auf die Entwicklung geeigneter Monitoringverfahren, auf die quantitative Abschätzung der Kontamination der Umwelt, auf die Identifikation relevanter Eintragspfade und auf erste Eintragsminimierungsansätze beschränkt. Ökotoxikologische Fragestellungen wurden zumeist mit Hilfe fabrikneuer Kunststoffe untersucht. Bei all diesen Ansätzen fehlte jedoch bislang ein fundamentales Verständnis von den physikalischen, chemischen und biologischen Prozessen, denen MP in der Umwelt unterworfen ist. Die wissenschaftliche Komplexität der Thematik MP erfordert für ein ebensolches Verständnis jedoch einen interdisziplinären Ansatz, der die traditionellen Fachgrenzen überbrückt. Das Ziel dieser SFB-Initiative ist es daher - ausgehend von Modellsystemen für Kunststoffe, Organismen und Umweltkompartimente - ein grundlegendes Verständnis jener Prozesse und Mechanismen zu erlangen, die in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe (A) die biologische Effekte von MP in limnischen und terrestrischen Ökosystemen bedingen, (B) die Migrationsbewegungen der MP-Partikel in und zwischen Umweltkompartimenten beeinflussen sowie (C) die Bildung von MP ausgehend von makroskopischen Kunststoffen verursachen. Diese Erkenntnisse werden erstmals eine wissenschaftlich fundierte Grundlage für die Bewertung der Umweltrisiken von MP existierender Massenkunststoffe bieten. Darauf aufbauend sollen - bereits in der ersten Antragsphase beginnend - neue umweltfreundliche Kunststoffe im Sinne einer nachhaltigen Polymerchemie entwickelt und anhand von Modellsystemen verifiziert werden. Diese neuen Kunststoffe werden unter anderem schnellere Abbauprozesse durch die Applikation von Beschleunigern und strukturellen Modifikationen aufweisen und werden zur Vermeidung bzw. Reduzierung von MP beitragen. Aufgrund der gewonnenen umfassenden Erkenntnisse aus Phase I sollen zudem auf längere Sicht (Phase II und III) Kunststoffe gezielt so modifiziert werden, dass sie aufgrund ihrer neuen Eigenschaften keine schädigenden Effekte auf Organismen und auf die Umwelt insgesamt mehr aufweisen. Die Komplexität der untersuchten Modellsysteme soll im Verlauf des SFB 1357 gesteigert werden, um eine möglichst hohe Relevanz in Bezug auf reale Ökosysteme zu erreichen.
Vor dem Hintergrund von Klimaschutz und steigenden Energiepreisen gewinnt die Energieeinsparung in Mietwohngebäuden immer mehr an Bedeutung. Da ein Fehlen von energetischen Differenzierungsmerkmalen im Mietspiegel einerseits den Markt nicht ausreichend abbildet und andererseits als Hemmnis für Investitionen in energetische Modernisierung wirken kann, sollen in dem Projekt Handlungsempfehlungen zur verstärkten Nutzung von energetischen Differenzierungsmerkmalen in Mietspiegeln erarbeitet werden. Ausgangslage: Das Thema Energieeinsparung in Gebäuden gerät zunehmend in den Fokus der Politik. In Mietwohngebäuden besteht das Dilemma, dass für die Investitionen in energetische Modernisierungen die Vermieter aufkommen müssen, den Nutzen aber die Mieter in Form von geringen Nebenkosten haben. Wird die Vergleichsmiete im Mietspiegel nicht von der energetischen Gebäudequalität beeinflusst, besteht für den Vermieter nach einer energetischen Modernisierung lediglich die Möglichkeit einer Mieterhöhung nach Paragraph 559 BGB um 11Prozent der Modernisierungskosten pro Jahr. Unter gewissen Rahmenbedingungen wird die Refinanzierung der energetischen Modernisierung hierüber nicht erreicht. Da ein Fehlen von energetischen Differenzierungsmerkmalen im Mietspiegel einerseits den Markt nicht ausreichend abbildet und andererseits als Hemmnis für Investitionen wirkt, wird in zahlreichen Städten das Thema diskutiert bzw. wurden bereits in einer Reihe von Städten energetische Differenzierungsmerkmale bei der Mietspiegelerstellung berücksichtigt wie zum Beispiel im Darmstädter Mietspiegel. Zielsetzung: Ziel des Forschungsprojektes ist es, Handlungsempfehlungen für Kommunalverwaltungen, Verbände und Politik zur verstärkten Nutzung von energetischen Differenzierungsmerkmalen in Mietspiegeln zu geben. Dabei werden verschiedene Verfahren mit unterschiedlichem Differenzierungsniveau betrachtet und diskutiert.
Origin | Count |
---|---|
Bund | 157 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 153 |
Text | 4 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 6 |
offen | 153 |
Language | Count |
---|---|
Deutsch | 144 |
Englisch | 45 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 80 |
Webseite | 78 |
Topic | Count |
---|---|
Boden | 107 |
Lebewesen & Lebensräume | 84 |
Luft | 58 |
Mensch & Umwelt | 158 |
Wasser | 62 |
Weitere | 159 |