Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Institut für marine Ökosystem- und Fischereiwissenschaften, Centrum für Erdsystemforschung und Nachhaltigkeit (CEN).
Das Projekt "Kontinuierliche Ueberwachung der Schadstoffimmission der unteren Erdatmosphaere (bis 200 m Hoehe) mittels Fessel-Heissluftballon" wird/wurde ausgeführt durch: Fachhochschule Gießen-Friedberg, Fachbereich Energie- und Wärmetechnik, Bereich Gießen.Fuer Umweltschaeden haftet nach bestehendem Recht der Verursacher. Dieser ist insbesondere bei Luftverunreinigungen z.B. durch Verbrennung von Abfaellen bei Nacht in vielen Faellen nicht zu ermitteln, da wegen der geringen Sinkgeschwindigkeit staubfoermiger oder tropfenfoermiger Schadstoffe laengst alle Verbrennungsspuren o.ae. beseitigt sind, wenn am Erdboden die Immission erfolgt. Bei Ueberwachung der unteren 200 m der Atmosphaere koennen Emissionen aber sehr viel frueher bereits ermittelt werden. Bei radioaktiven Emissionen, z.B. bei Reaktorunfaellen, kann durch Messung in der unteren Atmosphaere die Konzentration schon so fruehzeitig erfasst werden, dass ggf. Raeumung der gefaehrdeten Gebiete noch moeglich ist.
Das Projekt "Pruefstand zur Untersuchung von Sonnenkollektoren" wird/wurde ausgeführt durch: Fachhochschule Gießen-Friedberg, Fachbereich Energie- und Wärmetechnik, Bereich Gießen.Es sind zur Zeit eine grosse Zahl von Sonnenkollektoren auf dem Markt oder in Entwicklung, ohne dass der Verbraucher zu beurteilen vermag, welche Leistungen sie zu erbringen vermoegen. Es wird deshalb im Rahmen des Neubaues des Institutes fuer Klimatechnik und Umweltschutz ein Sonnenkollektor-Pruefstand errichtet, der vergleichende Untersuchungen unter exakt gleichen Bedingungen ermoeglicht. Bis zu 6 Kollektoren koennen gleichzeitig untersucht werden. Dabei werden die Leistungen jeweils auf einen standardisierten Vergleichskollektor bezogen. Entwicklung besonders preisguenstiger Kollektoren ist vorgesehen.
Das Projekt "Auswirkungen von Wasserstoff als Brennstoff auf die Anlagenbetriebsweise und Produktqualität in industriellen Prozessen am Beispiel der Textilveredlung, Teilvorhaben: Entwicklung und Untersuchung von Brennern mit variablem H2-Anteil im Brenngas u e dynamischen Gasmischanlage für H2/CH4-Gemische" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik, Lehrstuhl Gas- und Wärmetechnische Anlagen.Zu den übergeordneten Zielen des Projektvorhabens gehört die Reduzierung des CO2-Fußabdrucks der in Europa erzeugten oder nach Europa importierten Textilien. Die hier geplante Forschung und Entwicklung kann den CO2-Fußabdruck im entscheidenden Maße beeinflussen. Gleichzeitig kann mit der Textilbranche die zweitgrößte Konsumgüterbranche der Welt einen wesentlichen Beitrag zum Klimaschutz leisten. Dazu soll im Rahmen des Forschungsvorhabens ein Spannrahmentrockner für die Textilveredlung entwickelt werden, der bei Bereitstellung unterschiedlicher Erdgas-Wasserstoff-Gemische - bis hin zu 100% Wasserstoff in der Brenngasversorgung - zuverlässig arbeitet und Produkte mit hoher Qualität herstellt. Im Zentrum des Vorhabens steht mit dem Spannrahmentrockner eine der am häufigsten in der Textilveredlung zum Einsatz kommende Thermomaschine. Hierbei handelt es sich um einen Konvektionstrockner, der nasse Textilien im Anschluss an die Vorbehandlung, Farbgebung, Ausrüstung oder Beschichtung durch Anströmen mit heißer Luft aus einem in der Regel erdgasbetriebenem Brenner trocknet (etwa 150 Grad C Betriebstemperatur) oder aber auch trockene Ware und Spezialausrüstungen (bei Temperaturen größer als 170 Grad C) fixiert oder kondensiert. Die installierte Heizleistung eines durchschnittlichen Spannrahmens von 2 bis 3 MW und die mittlere benötigte Wärmemenge von 3.600 kJ pro kg Ware verdeutlichen den hohen Energiebedarf einer solchen Thermomaschine. Während des Betriebes steht die textile Ware in unmittelbarem Kontakt mit dem Abgas des Brenners.
Das Projekt "Wärmespeicherung in Zechen des Ruhrgebiets, Vorhaben: Wärmeübergabesystem" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik.
Das Projekt "Klimaneutrale und sektorenübergreifende Wärme- und Kälteversorgung von Gebäuden mit Grubenwassergeothermie als innovative Energiequelle ortskonkret für Quartiere in der Montanregion Erzgebirge als Modellregion, Teilvorhaben: Wärme-/Kälteentzug und zukunftsweisende Quartierskonzepte" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik.Um die Klimaziele der Bundesrepublik Deutschland zu erreichen ist in den nächsten Jahren eine umfassende Dekarbonisierung der Wärme- und Kälteversorgung unerlässlich. Im Rahmen des Projektes GEoQart wird diese Problemstellung aufgegriffen und es werden Quartierskonzepte mit einer Gebäudeheizung sowie Gebäudekühlung durch Grubenwassergeothermie (und weiterer erneuerbarer Energieträger) entwickelt. Es entsteht ein Analysewerkzeug, mit dem standortunabhängig Potenziale für Grubenwassergeothermie erfasst und dargestellt, sowie das optimale Quartierskonzept für den jeweiligen Untersuchungsstandort abgeleitet werden kann. Die Energie aus Grubenwässern wird dabei als zentrale, innovative, grundlastfähige und erneuerbare Energiequelle zur Kälte- und Wärmeversorgung eingesetzt. Die ohnehin anfallenden Nachsorgemaßnahmen im Altbergbau können dabei direkt positiv verwendet werden um die kostenintensive Ewigkeitsaufgabe in eine Chance zur regenerativen Energieversorgung der Gebäude zu überführen. Der Fokus liegt dabei auch auf der Analyse der praktischen Umsetzung, um direkt einen Beitrag zu den anvisierten Klimazielen im Gebäudesektor leisten zu können. Potenzielle Anlagenbetreibern und Investoren können dann mit dem Tool mögliche Grubenwasserstandorte mit geringem Aufwand analysieren und die optimalen Quartierskonzepte ableiten. Um die intensivere Nutzung der Grubenwassergeothermiepotenziale in Deutschland voranzutreiben und die Anwendung des im Projekt entwickelten Tools zu erleichtern, werden im Rahmen des Projektes u.a. auch zwei Workshops und eine Fachkonferenz veranstaltet.
Das Projekt "Klimaneutrale und sektorenübergreifende Wärme- und Kälteversorgung von Gebäuden mit Grubenwassergeothermie als innovative Energiequelle ortskonkret für Quartiere in der Montanregion Erzgebirge als Modellregion" wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik.Um die Klimaziele der Bundesrepublik Deutschland zu erreichen ist in den nächsten Jahren eine umfassende Dekarbonisierung der Wärme- und Kälteversorgung unerlässlich. Im Rahmen des Projektes GEoQart wird diese Problemstellung aufgegriffen und es werden Quartierskonzepte mit einer Gebäudeheizung sowie Gebäudekühlung durch Grubenwassergeothermie (und weiterer erneuerbarer Energieträger) entwickelt. Es entsteht ein Analysewerkzeug, mit dem standortunabhängig Potenziale für Grubenwassergeothermie erfasst und dargestellt, sowie das optimale Quartierskonzept für den jeweiligen Untersuchungsstandort abgeleitet werden kann. Die Energie aus Grubenwässern wird dabei als zentrale, innovative, grundlastfähige und erneuerbare Energiequelle zur Kälte- und Wärmeversorgung eingesetzt. Die ohnehin anfallenden Nachsorgemaßnahmen im Altbergbau können dabei direkt positiv verwendet werden um die kostenintensive Ewigkeitsaufgabe in eine Chance zur regenerativen Energieversorgung der Gebäude zu überführen. Der Fokus liegt dabei auch auf der Analyse der praktischen Umsetzung, um direkt einen Beitrag zu den anvisierten Klimazielen im Gebäudesektor leisten zu können. Potenzielle Anlagenbetreibern und Investoren können dann mit dem Tool mögliche Grubenwasserstandorte mit geringem Aufwand analysieren und die optimalen Quartierskonzepte ableiten. Um die intensivere Nutzung der Grubenwassergeothermiepotenziale in Deutschland voranzutreiben und die Anwendung des im Projekt entwickelten Tools zu erleichtern, werden im Rahmen des Projektes u.a. auch zwei Workshops und eine Fachkonferenz veranstaltet.
Das Projekt "Forschergruppe (FOR) 2401: Optimierungsbasierte Multiskalenregelung motorischer Niedertemperatur-Brennverfahren, Forschergruppe FOR 2401: Optimierungsbasierte Multiskalenregelung motorischer Niedertemperatur-Brennverfahren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Lehrstuhl und Institut für Regelungstechnik.Die ökonomische und ökologische Energiebereitstellung stellt eine zentrale gesellschaftliche Herausforderung dar. Diese wird durch die steigenden Umweltbelastungen bei gleichzeitig wachsendem weltweitem Energiebedarf und zunehmender Ressourcenverknappung bedingt. Für mobile Antriebe nimmt insbesondere die Verminderung des bei der motorischen Verbrennung entstehenden Treibhausgases CO2 sowie der Schadstoffemissionen ein wichtiges Ziel ein. Dies sind zum Beispiel Stickoxide (NOx), Kohlenmonoxid (CO), unverbrannte Kohlenwasserstoffe (uHC) und Ruß, die erheblich zur städtischen und regionalen Luftverschmutzung beitragen. Zur Realisierung von hohen Wirkungsgraden bei gleichzeitig niedrigen Schadstoffemissionen untersucht die FOR2401 die zukunftsträchtige Niedertemperaturverbrennung (NTV). Die NTV kann sowohl auf Ottomotoren (Gasoline Controlled Auto Ignition, GCAI) als auch auf Dieselmotoren (Premiexed Charge Compression Igniton) angewendet werden und zeichnet sich als ein Brennverfahren aus, welches das Potential bietet, bereits innermotorisch die Emissionen deutlich zu reduzieren. Die Komplexität der Prozessführung ist einer der wesentlichen Gründe, welcher die technische Anwendung der NTV aktuell verhindert. Der Ablauf der NTV wird maßgeblich von lokalen thermodynamischen Zuständen und strömungsmechanischen Effekten bestimmt. Die Zeitskalen der hierbei auftretenden Abläufe sind kleiner als die des Verbrennungszyklus und können deshalb nicht mit einer dem Stand der Forschung entsprechenden zyklusbasierten Regelung beeinflusst werden. Um eine hinsichtlich Stabilität, Wirkungsgrad und Schadstoffemissionen verbesserte Prozessführung zu ermöglichen, werden im Rahmen der Forschergruppe Multiskalenregelungskonzepte untersucht, welche Neuland darstellen. Zur erfolgreichen Realisierung der Multiskalenregelung müssen grundlegende Forschungsfragen aus den Disziplinen Chemie, Verbrennungstechnik, Motorenforschung, Regelungstechnik und Numerik geklärt werden. Aus diesem Grund setzt die Forschergruppe auf einen stark vernetzten, interdisziplinären Ansatz. Innerhalb der FOR2401 soll ein detailliertes physikalisch-chemisches Prozessverständnis der NTV und der zugehörigen Beeinflussungsmöglichkeiten entwickelt werden, wodurch eine Beschreibung in Form von mathematischen Modellen ermöglicht wird. Aufbauend auf diesen Erkenntnissen werden maßgeschneiderte regelungstechnische Methoden entwickelt, die auf Echtzeitoptimierung basieren und die Kontrolle auf einer kleineren als der aktuell möglichen Zeitskala erlauben. Die Forschung erfolgt im engen Schulterschluss zwischen Natur- und Ingenieurswissenschaftler/innen der Universität Bielefeld, der Universität Freiburg und der RWTH Aachen University.
Das Projekt "Maritime Abfall- und Abwasserentsorgungstechnologie - Energieeffizientes und dezentrales Konzept für eine sichere und intelligente maritime Abfallwirtschaft, Vorhaben: Grundlagenforschung zur Vergasung und Verbrennung gemischter maritimer Abfälle" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik, Lehrstuhl Gas- und Wärmetechnische Anlagen.
Das Projekt "Entwicklung einer neuartigen energieoptimierten Prozessführung und neuer Gerätetechnik für das aluminothermische Schweißen von Schienen, Teilvorhaben TTD: Entwicklung und Anwendung von Modellen zur Energieoptimierung durch Prozessführung und zur Realisierung eines Digitalen Zwillings der AT-Technologie" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik, Professur für Technische Thermodynamik.Die Projektidee zielt auf eine Optimierung der Prozessführung beim aluminothermischen Schweißen hinsichtlich der verwendeten Energiemenge. Dazu sollen alle Teilprozesse des Schweißens wie Trocknung/Vorwärmung, Thermit(R)-Reaktion, Formfüllung, Abkühlung/Erstarrung, Gefügebildung und Thermomechanik hinsichtlich ihres Energieeinsparpotentiales untersucht werden. Die entwickelte Modellierung des Gesamtsystems mündet final in einen 'Digitalen Zwilling' des aluminothermischen Schweißens und gestatten damit die gezielte Ausnutzung energetischer Potenziale, ohne die Robustheit und Gleistauglichkeit des AT-Schweißprozesses zu gefährden. In einem Technologieträger werden die gefundenen komplexen Modellvorstellungen validiert und Energieeinsparungen experimentell untersucht, nachgewiesen und quantifiziert.
Origin | Count |
---|---|
Bund | 270 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 266 |
Text | 5 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 7 |
offen | 266 |
Language | Count |
---|---|
Deutsch | 258 |
Englisch | 51 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 157 |
Webseite | 115 |
Topic | Count |
---|---|
Boden | 182 |
Lebewesen & Lebensräume | 158 |
Luft | 121 |
Mensch & Umwelt | 273 |
Wasser | 121 |
Weitere | 273 |