API src

Found 1 results.

WHU-SWPU-GOGR2022S: A combined gravity model of GOCE and GRACE

WHU-SWPU-GOGR2022S is a static gravity field model complete to spherical harmonic degree and order of 300 by combining GOCE and GRACE normal equations. Details of the processing procedures are as follows: (1) Details of the GOCE processing procedures: (1a) Input data: -- GOCE SGG data: EGG_NOM_2 (GGT: Vxx, Vyy, Vzz and Vxz) in GRF (9/10/2009-20/10/2013) -- GOCE SST data: SST_PKI_2, SST_PCV_2, SST_PRD_2 (9/10/2009-20/10/2013) -- Attitude: EGG_NOM_2 (IAQ), SST_PRM_2 (PRM) -- Non-conservative force: Common mode ACC (GG_CCD_1i) -- Background model: tidal model (solid etc.), third-body acceleration, relativistic corrections, ... (1b) Data progress strategies: -- Data preprocessing - Gross outlier elimination and interpolation (only for the data gaps less than 40s). - Splitting data into subsections for gaps > 40s -- The normal equation from SST data - Point-wise acceleration approach (PAA) - Extended Differentiation Filter (low-pass) - Max degree: up to 130 - Data: PKI, PCV, CCD -- The normal equation from SGG data - Direct LS method - Max degree: up to 300 - Data: GGT, PRD, IAQ, PRM - Band-pass filter: used to deal with colored-noise of GGT observations (pass band 0.005-0.100Hz ) - Forming the normal equations according to subsections - Spherical harmonic base function transformation instead of transforming GGT from GRF to LNRF -- Combination of SGG and SST - Max degree: up to 300 - The VCE technique is used to estimate the relative weights for Vxx, Vyy, Vzz and Vxz - Tikhonov Regularization Technique (TRT) is only applied to near (zonal) terms (m<20, n<=200) and high degree terms (n>200) - Strictly inverse the normal matrix based on OpenMP (2) Details of the GRACE processing procedures: (2a) Input data: -- GRACE L1B (JPL) data products: GNV1B RL02, ACC1B RL02, SCA1B RL03 and KBR1B RL03 -- AOD1B RL06 (GFZ) de-aliasing product -- Data period: 04/2002-05/2017 (2b) Data preprocessing: -- Splitting data of SCA1B into subsections for gaps > 120s and interpolation with polynomial for gaps <= 120s -- Splitting data of ACC1B into subsections for gaps > 5s and interpolation with polynomial for gaps <= 5s -- Gross outlier elimination ACC1B with a moving window of length 10 min, and interpolation with polynomial -- Pre-calibration of ACC1B with a-priori bias and scale Parameters provided by GRACE TN-02 (2c) Calculation method: - dynamic approach - numerical integrator: 8th-order Gauss-Jackson integrator - integrator step: 5 seconds - arc length: 24 hours (2d) Combination - GNV1B and KBR1B are combined with their a-priori precision, i.e. 2cm of GNV1B and 2um/s of KBR1B - The normal equations of different months are combined with variance components estimation (2e) Force models: - Earth's static gravity field: GGM05s up to d/o 180 - Solid earth tides: IERS 2010 - Ocean tides: FES2014b up to d/o 180 - Solid Earth pole tide: IERS 2010 - Ocean pole tide: Desai 2002 up to d/o 180 - N-body Perturbation: the Sun and Moon with JPL DE421 - atmospheric tides: Bode and Biancale model - AOD1B product: AOD1B RL06 model up to d/o 180 - General Relativistic effects: Schwarzschild terms of IERS 2010

1