Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.
Mehrere Umweltarchive aus der Serra do Tabuleiro und Serra Geral, gelegen im Biodiversitätzentrum Mata Atlantica im südlichen Brasilien, sollen anhand der Pollen-, Sporen-, Holzkohle- und Sedimentanalyse untersucht, zeitlich datiert, und die ermittelten Daten mit Hilfe multivariater Datenanalysemethoden ausgewertet werden. Diese Studien bilden eine Grundlage zur Entwicklung, zum Verständnis der Stabilität bzw. Dynamik heutiger Ökosysteme einschließlich ihrer Biodiversität und damit auch zum nachhaltigen Schutz und Management der artenreichen Vegetation Südbrasiliens. Für die Serra do Tabuleiro soll u.a. geklärt werden, ob die vorhandenen Grassländer natürlich sind oder vom Menschen verursacht wurden und ob die isolierten Vorkommen von Araukarienwäldern aus einem eiszeitlichen Refugium in diesem Küstengebirge stammen. Für die Serra Geral soll zusätzlich die Entstehung und Dynamik der scharfen Grenze zwischen Wald und Grasland untersucht werden. Die Rolle von Bränden und Klimaveränderungen und deren Einfluss auf die Vegetation soll in beiden Gebieten bearbeitet werden. Eingebunden sind die paläoökologischen Untersuchungen in zwei internationale Forschungsprojekte.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
Zweck der Waldkalkungen ist, der zum Teil tief reichenden Versauerung der Waldböden entgegenzuwirken. Die fortschreitende Versauerung der Böden geht mit erheblichen Schädigungen des Ökosystems Wald einher. So werden mit sinkenden pH-Werten (Säuregradmesser) das giftige Aluminium und Schwermetalle ausgewaschen, die die Wurzeln der Bäume schädigen und ins Grundwasser verlagert werden. Auch Nährstoffe werden dem Boden entzogen und stehen damit den Pflanzen nicht mehr zur Verfügung. Durch die Kalkungsmaßnahmen werden die Waldböden sozusagen mit einer Schutzhülle aus Kalk bedeckt. Der Kalk soll die über die Niederschläge eingetragenen Säuremengen in den obersten Bodenschichten über einen gewissen Zeitabschnitt neutralisieren, um damit den Bodenzustand zu stabilisieren und ggfs. auch wieder zu verbessern. Die Kalkung dient zudem auch dem Grundwasser- und damit letztlich dem Trinkwasserschutz. Besonders kalkungsbedürftig sind die Waldflächen der Buntsandsteingebiete im Saarland, da deren Böden von Natur aus ein nur geringes Pufferungsvermögen gegenüber Säureeinträgen aufweisen. Den Kalkungsmaßnahmen vorausgegangen waren bodenchemische Analysen durch das Landesamt für Umwelt und Arbeitsschutz (LUA), um zuverlässige Aussagen über den Bodenzustand zu erhalten. Im Anschluss an die Kompensationskalkung wird es weitere Untersuchungen im Sinne einer Wirkungskontrolle geben. Von der Kalkung ausgeschlossen werden einerseits aus Naturschutzgründen sensible Flächen (z.B. Naturschutzgebiete, Naturwaldzellen u.ä.). Anderseits werden Verkehrsflächen und siedlungsnahe Flächen ausgeschlossen. Die Kompensationskalkung erfolgt ausschließlich in der vegetationsarmen Zeit, da nur dann sichergestellt ist, dass eine möglichst große Kalkmenge den Boden auch erreicht. Ausgebracht wird der Magnesiumkalk per Hubschrauber. Bei einer Menge von etwa 3 Tonnen pro Hektar können so pro Tag zwischen 60 und 75 Hektar Wald behandelt werden.
Plant uptake of phosphate (P) in complex forest ecosystems relies to a great extent on microbial mineralization of P from organic and inorganic sources but the relative contributions of the microbial communities to P cycling and allocation in forest soils is not yet very well understood. Within this project we will focus on two interactions that could elucidate key processes of microbial P dynamics in forest sites. We want to clarify the importance of both fungal-fungal and bacterial-fungal interactions for P dynamics in forest soils that are transitioning from P acquiring (efficient mobilization of P from primary and secondary minerals) into P recycling systems (highly efficient cycling of P). We want to reveal furthermore the relative contributions of saprotrophic and ectomycorrhizal fungi to P cycling and allocation. Following a hierarchical approach we want to investigate: (I) the fungal-fungal interaction between saprotrophic and ectomycorrhizal fungi at the plot scale by a systematical exclusion of ectomycorrhizal fungi in the field; (II) elucidate the P dynamics in the mycosphere at the small scale (mm to cm scale) by the use of trenching experiments. (III) investigate the regulation of bacterial as well as fungal P cycling in a microcosm experiment and evaluate the particular microbial uptake, allocation and cycling of P in the mycosphere by the use of several chemical and microbiological approaches. The trenching experiments will be performed on the study sites: Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss in close proximity to beech trees (Fagus sylvatica L.). The microcosm experiment will be performed under controlled conditions in the lab.
Soil organic matter is considered to become an increasingly important source of bioavailable phosphorus (P) with depletion of inorganic P within primary minerals. Current concepts on P cycling and mobilization of organic P largely ignore the formation of mineral-organic associations. This project aims to link processes occurring at the nanoscale on mineral surfaces with the bioavailability of organic P, with particular focus on the influence of biodiversity and establishment of functional niches by microbial communities on P recycling in soils. Along a soil P availability gradient the proportion of mineral-associated P as well as its composition (31P NMR and X-ray absorption near edge structure spectroscopy) will be determined and related to mineralogical soil properties. Based on adsorption and desorption experiments using both, monomeric and polymeric P sources, the recycling potential of mineral-bound organic P by various biotic communities (plants, mycorrhiza, bacteria) will be determined in mesocosm and field experiments. We expect to assess the relevance of mineral-associated organic P for the P recycling of forest ecosystems and to identify the major controlling abiotic and biotic variables.
Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.
Im Laufe ihrer Entwicklung gehen Waldökosysteme zur Deckung ihres Phosphorbedarfs von der Nutzung gesteinsbürtiger Mineralquellen zum Recycling organisch gebundenen Phosphors über. Da anorganischer Phosphor sehr stark durch Sekundärminerale gebunden wird, ist er kaum pflanzenverfügbar, unterliegt aber auch kaum der Auswaschung. Austräge gelösten Phosphors erfolgen überwiegend in organischer Form, egal in welcher Entwicklungsphase sich das System befindet. Allerdings ist nur wenig über die Zusammensetzung und Dynamik gelösten organischen Phosphors (DOP) bekannt. Wahrscheinlich sind insbesondere mikrobielle Produkte, wie Nukleotide und Nukleinsäuren, mobil. Hingegen scheinen pflanzliche Phosphorverbindungen, z.B. Phytate, weniger der Auswaschung zu unterliegen, weil sie vermutlich stärker gebunden werden. Die mobilen mikrobiellen Verbindungen sind potentiell enzymatisch hydrolysierbar; daher ist es möglich, dass der in ihnen enthaltene Phosphor von Pflanzen aufgenommen wird und sich so die Austräge aus Recyling-Systemen verringern. Unser Vorhaben hat zum Ziel, zu klären welche stofflichen Eigenschaften phosphorhaltiger organischer Verbindungen ihre Mobilität kontrollieren, welche Einflüsse ihre Zusammensetzung steuern, und welche Bedeutung sie als Phosphorquelle für Bäume haben. Dazu sammeln wir Auflagensickerwässer und Bodenlösungen an Standorten entlang des für der das SPP1685 vorgeschlagenen Phosphorverfügbarkeitsgradienten. Diese werden mittels spektroskopischer Methoden (v.a. NMR, an ausgewählten Proben auch XPS und XANES) auf Phosphorspezies sowie die enzymatische Umsetzbarkeit (in Kombination mit spektroskopischen Methoden) untersucht. Dadurch können mobile wie labile Substanzen identifiziert werden. Ähnliche Untersuchen werden an Lösungen aus Manipulationsexperimenten (Trockenheit, pH) andere SPP-Antragsteller zur Steuerung der Mobilisierung gelösten Phosphors vorgenommen, so dass Änderungen der Zusammensetzung und damit der chemischen und biologischen Reaktivität betrachtet werden können. Einen weiteren Schwerpunkt bilden Laborversuche zur potentiellen Mobilität bestimmter organischer Phosphorspezies (Sorptionsexperimente, in Kombination mit spektroskopischen Methoden) sowie Versuche mit 13C-, 14C- und 33P-markierten Substanzen zur potentiellen Aufnahme gelöster organischen Phosphors durch Baumsetzlinge, wobei zwischen Aufnahme nach Hydrolyse und direkter Aufnahme organischer Moleküle unterschieden werden soll.
| Origin | Count |
|---|---|
| Bund | 1140 |
| Kommune | 1 |
| Land | 176 |
| Wissenschaft | 25 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Daten und Messstellen | 135 |
| Ereignis | 5 |
| Förderprogramm | 929 |
| Gesetzestext | 1 |
| Lehrmaterial | 1 |
| Text | 178 |
| unbekannt | 77 |
| License | Count |
|---|---|
| geschlossen | 334 |
| offen | 973 |
| unbekannt | 20 |
| Language | Count |
|---|---|
| Deutsch | 1128 |
| Englisch | 492 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Bild | 9 |
| Datei | 139 |
| Dokument | 78 |
| Keine | 779 |
| Unbekannt | 8 |
| Webdienst | 6 |
| Webseite | 483 |
| Topic | Count |
|---|---|
| Boden | 1062 |
| Lebewesen und Lebensräume | 1327 |
| Luft | 873 |
| Mensch und Umwelt | 1265 |
| Wasser | 741 |
| Weitere | 1327 |