API src

Found 317 results.

Related terms

Five years of monitoring sooty bark disease (Cryptostroma corticale) on sycamore maple (Acer pseudoplatanus) in the floodplain forest of Leipzig, Germany

As part of the "Lebendige Luppe" project, sooty bark disease was recorded on more than 1500 sycamore maples (Acer pseudoplatanus) (trunks >5cm breast hight diameter) on 60 plots (each 2500 m²) in the late summers of 2020 to 2024. The selection of trees (according to their size) was based on 2 forest inventories (2016 and 2020) (Rieland et al. 2024, Scholz et al. 2022). As a result, new trees were added for recording in 2021. Tree damage caused by sooty bark disease was assessed via five damage classes according to the methodology outlined by Burgdorf and Straßer (2019). Trees that could not be found again were described as NA if there were no signs of felling.

Entwicklung von Konzepten zur langfristigen naturnahen agroforstlichen Bewirtschaftung von Araucarienwaelder und Erschliessung kurzfristiger Nutzungsmoeglichkeiten in Wiederaufforstungszonen 'pro-mata/pro-araucaria'

Entwicklung eines nachhaltigen Nutzungskonzeptes - im Sinne des Begriffs 'sustainable use', Wiederherstellung und Bewahrung naturnaher Waldbestaende und ihrer Oekosysteme, Verbesserung der Lebensbedingungen in der Region durch Schaffung nachhaltiger Existenzgrundlagen fuer die oertliche Bevoelkerung. Zur Erreichung der gesteckten Oberziele sieht das Projekt der Fachhochschule Rottenburg in der ersten Phase folgende Massnahmen vor: Inventur des aktuellen Zustandes der Wald- und Freiflaechen durch: Luftbildbefliegung und -kartierung des Gebietes, zweite terrestrische Inventurstufe (Stichproben): Boden- bzw. Standortskartierung, Anlage von Versuchs- und Kontrollflaechen zur Ermittlung der Standortseignung, der Wuchsdynamik, der Verjuengungsdynamik und der natuerlichen Sukzession, geeigneter Pflanzverfahren, Mitwirkung an der Nutzungsplanung fuer das gesamte Projektgebiet.

Tree inventory dataset of floodplain forest, Leipzig, Germany

Leipzig is the only major German city in which extensive hardwood floodplain forests have been preserved. At present, drying out and a lack of hydrodynamics pose the greatest challenges for the conservation of the floodplain landscape. Restoring typical floodplain hydrological conditions and habitats can sustainably safeguard biodiversity and numerous ecosystem services in the medium term. To this end, the Lebendige Luppe project aim to reactivate typical floodplain hydrodynamics with inundation over large areas, the restoration of old river courses and the conversion of intensively farmed areas into typical floodplain habitats. The Lebendige Luppe project, itself is a joint project of cities of Leipzig and Schkeuditz and the NABU Saxony as implementation partner and the University of Leipzig and the UFZ-Helmholtz Centre (Partner for accompanying natural and social science) (Scholz et al. 2022). The implemented and planned restoration measures are accompanied by long-term scientific monitoring (UFZ and Leipzig University). For this purpose, 60 permanent observation plots were set up in the area of the measures according to the BACI design (Before-After / Control-Impact), on which the diversity of selected indicator groups (vegetation, molluscs, ground beetles) as well as groundwater dynamics, water and material balance in the soil, carbon storage and forest growth are recorded (Scholz et al. 2022). By integrating further landscape ecology and nature conservation data, a comprehensive analysis of the status quo and the changes in site conditions, biodiversity and ecosystem functions of the floodplain resulting from the expected floodplain dynamisation is possible, which goes beyond what has been available to date. The resulting simulation of hardwood forest responses to the changing abiotic environmental variables are already the basis for assessing the impact of the planned measures in the implementation process. This data publication contains the tree inventory data of the scientific accompanying research of the winters 2013/2014 and 2016/2017 (first inventory) and a repeat inventory from the winter of 2020/21. The Leipzig riparian forest distributed on old hardwood riparian forest (main tree population older than 90 years) of the forestry office of the city of Leipzig and Sachsenforst as state forest (Scholz et al. 2022). All stands were identified as Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris) – Annex I habitat type (code 91F0).

Nine years of monitoring ash dieback in the floodplain forest of Leipzig, Germany

As part of the Lebendige Luppe project, ash dieback disease was recorded on European ash trees (Fraxinus excelsior, trunks >5cm breast height diameter) on 60 plots (each 2500m²) in the late summers of 2016 to 2024. The trees were assessed according to Langer et al. (2015). However, an additional category 6 (dead tree) was introduced to distinguish between dead and dying trees. The selection of trees (according to their size) was based on 2 forest inventories (2016 and 2020) (Rieland et al. 2024, Scholz et al. 2022). As a result, new trees were added for recording in 2021. From 2020, the additional parameter Tree damage class, ash bark beetle was introduced to assess the damage caused by the ash bark beetle in 4 categories. From 2023, an additional parameter Tree damage class, ash dieback crown was introduced, which based on Lenz et al. (2012) and indicates the damage in the crown of the tree. This classification was added because, unlike the Langer et al. (2015) classification, it describes the damage class independently of the beetle infestation. A comparison of the different damage classifications enables a better description of the damage pattern. A more detailed description of the three parameters used (Tree damage class, ash dieback; Tree damage class, ash bark beetle and Tree damage class, ash dieback crown) is provided in the dataset comment.

Towards pollen accumulation rates as a measure of plant abundance a case study in NE-Germany

The aim of my study is to calibrate PAR from small lakes against tree biomass, which can be used to achieve quantitative estimates of biomass in the past. Furthermore, the relation between pollen percentages and plant abundance will also be investigated. As study area, the state Brandenburg was chosen, because it has a large number of lakes and is covered by different plant communities, like conifer forest, mixed forest, deciduous forest and open land. These are situated on a range of soil types in a terrain with little altitudinal differences. Lakes in different types of landscape were selected. They were of almost uniform size, mostly ranging from 100-300 m in diameter and without inflow and outflow. Deeper lakes in proportion to the lake size were preferred, to avoid lakes with a high pollen redeposition. In order to have an effective fieldwork and to get the broadest possible data spectrum for modeling, the relevant pollen source area of pollen (Sugita, 1994) was estimated, based on the map CORINE. The calculation shows that the pollen source area is approximately 5-6 km. However, we also sampled lakes which are situated closer together, especially when the landscape structure was very heterogenic at the small scale. From the surface samples of 50 lakes, the pollen percentages of different taxa will be compared with the information from the forest inventory data for different distances around the lakes to evaluate theoretical considerations of pollen source area. These data are available at the data base Datenspeicher Wald, which contains information about cover, age and biomass for the different tree species. This information was collected during the time of the German Democratic Republic (DDR) and is in the most continued. Concurrently, 15 of the short cores are selected for dating by 210Pb. PAR will be calculated based on the sedimentation rates obtained for these cores, so that PAR can be compared to tree biomass for different time slices over the past 50 years.

Clustered Subsampling of Double Sampling for Stratification and Growth Model Based Updates of Past Forest Inventories

Double Sampling for Stratification is a sampling design that is widely used for forest and resource inventories worldwide and, particularly, well established for periodic forest inventories of districts in public and private forests in Germany. Spatially clustered subsampling of second-phase units, actually representing a third phase of sampling, can be expected to reduce travelling costs, but will also decrease precision of estimates. Therefore, the proposed project is intended to develop estimators for totals and per hectare values of usual target variables in forest inventories as well as related sampling errors under that new three-phase sampling design. Using real data the trade-off between precision and amount of clustering will be analyzed. A special focus will be on temporary regional or state-wide inventories based on previous double sampling district inventories. In this case additional precision can be gained by updating the previous inventories using growth models. These growth predictions shall be combined with the sample based estimator to form a composite estimator of higher precision.

Forstliche Umweltbeobachtung: Boden - Wasser - Luft

Ermittlung von Ausmaß, Verlauf und weiterem Fortschreiten der Walderkrankungen zur Vorbereitung und Auswertung der jährlichen Waldzustandserhebung im Rahmen der Erforschung von Ursachen für Waldschäden.

CoForChange: Diagnose- und Entscheidunginstrumente zur Abmilderung der Folgen des Klimawandels auf die Biodiversität der Wälder des Kongobeckens

Wie, warum und wo überleben Baumarten zunehmenden Stress? Das Projekt wird in in Zusammenarbeit mit einem Konsortium europäischer Institutionen durchgeführt.

Development of design unbiased estimators for the restricted k-tree sampling techniques PCM (point-centered quarter method) and T-square sampling

k-tree sampling is frequently applied in ecological sampling; less so in forest inventory for the concern of unbiasedness. A design-unbiased estimator had recently been developed (Kleinn and Vilcko 2006), using inclusion zones that quantify the per-tree selection probability - but that are laborious to determine in the field (higher order Voronoi diagrams). That estimation approach shall be further developed in this project for restricted k-tree sampling; that is to the point-centered-quarter method and to the T-square sampling technique. New approaches are required, the higher order Voronoi diagrams do not apply. Also, we wish to clarify the following research questions for both unrestricted and restricted k-tree sampling:Can the selection probability be approximated by regressing them to easily measurable inter-tree distances at the sample point - How compares the unbiased estimator for restricted/unrestricted k-tree sampling to fixed area plots in terms of precision for different point patterns - Can tree mapping be optimized by an integrated field computing and measurement system - Theoretical analyses and simulation studies on real data will be carried and also field testing. The results will be equally important for forest inventory sampling and for ecological sampling.

Fragmentation of information procurement from large area forest inventory and the link to the policy-making process within the international forest regime complex

This project aims at analysing the contribution of scientific information to the fragmentation of the international forest regime complex (IFRC) by applying an interdisciplinary approach at the interface between forest inventory research and policy science. Its objectives are1. Analyzing the use of inventory information within the IFRC by different national and international bureaucracies and their non-state allies and its effect on fragmentation. 2. Assessing the extent and quality of the inventory information used in policy processes as compared to the potentially available information. 3. Analyzing implemented inventory practices against the scientific state of the art approaches and their role in the context of fragmentation 4. Identifying avenues for scientific knowledge to enter into the IFRC by testing the knowledge-transfer-by-allies-hypothesis. The project will review the technical scientific possibilities of forest inventories and develop a method for assessing quantity and quality of inventory-based information used within the IFRC by national and international bureaucracies. Subsequently, the quality of information used will be assessed against the state of the art in inventory research. Based on the hypothesis that information may only enter the policy process in alliance with powerful actors, who in turn selected the information, the project will analyse the interest-driven selection of information by political actors.

1 2 3 4 530 31 32