API src

Found 2444 results.

Similar terms

s/wandstärke/Windstärke/gi

Klimaerlebnisbaum - Rottendorf - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 01.12.2024 12 Uhr](https://opendata.smartandpublic.eu/datasets/a00d7121-fc5b-4b4d-ad19-5b0e3689b5dd?locale=en#state=011dcbe3-d7f2-4512-ac48-b8d08b563e01&session_state=45ffef6b-701d-4846-ac6d-9af6d7c6ff80&iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub&code=a85c0ca8-b9b3-4785-bd45-11b0d3201e34.45ffef6b-701d-4846-ac6d-9af6d7c6ff80.cc28098c-2fc1-472b-a4ca-77a8ebde7f28)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Paradeplatz - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Paradeplatz sind mehrere Bäume der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 17.07.2023](https://opendata.smartandpublic.eu/datasets/1e57b1c9-db2a-468a-8fbe-c949279cbb24?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Rennweg - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Bäume der Art Robinia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 05.06.2023](https://opendata.smartandpublic.eu/datasets/83d2cd89-f911-43dd-a6f8-76bb7c387cfd?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Luftmessstelle Nr. 1501 in Zierenberg

Dieser Datensatz enthält Informationen der Luftmessstelle Nr. 1501 in Zierenberg. Es werden nur die an der Station erfassten Messwerte der letzten 20 Jahre publiziert. Ältere Daten können auf Anfrage erhalten werden. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Luftmessstelle Nr. 0402 in Wiesbaden Süd

Dieser Datensatz enthält Informationen der Luftmessstelle Nr. 0402 in Wiesbaden Süd. Es werden nur die an der Station erfassten Messwerte der letzten 20 Jahre publiziert. Ältere Daten können auf Anfrage erhalten werden. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Luftmessstelle Nr. 0850 in Spessart

Dieser Datensatz enthält Informationen der Luftmessstelle Nr. 0850 in Spessart. Es werden nur die an der Station erfassten Messwerte der letzten 20 Jahre publiziert. Ältere Daten können auf Anfrage erhalten werden. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg

null Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg Sehr geehrte Kolleginnen und Kollegen der baden-württembergischen Redaktionen, wenn Sie sich für die Entwicklung der Feinstaubwerte in der Silvesternacht interessieren und aktuell am 01.01.2025 oder 02.01.2025 berichten möchten, erinnern wir Sie daran, dass Sie die Werte auf unserer Webseite Immissionsdaten Baden-Württemberg selbst abrufen können, und zwar für alle Messstellen, an denen wir Feinstaub PM10 kontinuierlich messen. Dies betrifft Standorte im städtischen und ländlichen Hintergrund sowie einige verkehrsnahe Standorte. Anleitung: Abruf von gemessenen Werten für Feinstaub PM10 auf den Webseiten der LUBW Landesanstalt für Umwelt Baden-Württemberg Möchten Sie die Entwicklung der Feinstaubwerte verfolgen, rufen Sie unsere Webseite: Themen/Luft/Aktuelle Messwerte/Tabelle auf. Um eine Übersicht über die höchsten Werte des Tages zu erlangen, wählen Sie die Funktion „Tabelle“ sowie den Luftschadstoff „Feinstaub PM10“. Hier können Sie den höchsten Wert des Tages und des Vortages ablesen. Die Tabelle ist sortierbar. Um den zeitlichen Verlauf und die Konzentration zu einer bestimmten Uhrzeit ablesen zu können, wechseln Sie zur Funktion Diagramm , wählen die entsprechende Station aus und fahren mit Ihrem Maus-Cursor entlang der Kurve im Diagramm zur höchsten Stelle am entsprechenden Tag. So können Sie die Uhrzeit ermitteln, zu der der höchste 24h-Mittelwert (in µg/m³) ermittelt wurde. In der Grafik darunter finden Sie die Stundenmittelwerte. Auch hier fahren Sie mit Ihrem Maus-Cursor an der Kurve im Diagramm entlang zur höchsten Stelle am entsprechenden Tag. So können Sie sich den höchsten Stundenmittelwert (in µg/m³) des Tages anzeigen lassen. Rückblick: Feinstaubwerte in der Silvesternacht in den vergangenen Jahren Erhöhte Werte meist kurz nach Mitternacht In den vergangenen Jahren kam es in der Silvesternacht meist kurz nach Mitternacht zum Anstieg der Feinstaubwerte an den wohnortnahen LUBW-Messstellen zur Überwachung der Luftqualität. Der Rauch von gezündeten Böllern und Raketen besteht zum großen Teil aus Feinstaub und führt häufig zu einer erhöhten Feinstaubbelastung in der Luft. Dauer und Höhe der Belastung hängen von den Emissionen und den Witterungsverhältnissen ab. Aber auch in den vergangenen Jahren war die Belastung der Luft mit Feinstaub unterschiedlich stark ausgeprägt. Die meteorologischen Größen Wind, Temperatur und Niederschlag haben Auswirkungen auf die Austauschbedingungen in der Luft. Im Winter bestehen während ausgeprägten Hochdruckwetterlagen häufig schlechte Ausbreitungsbedingungen mit geringen Windgeschwindigkeiten und einer stabilen Schichtung der Atmosphäre (Inversionswetterlage). Vereinfacht gesagt: Ist es windig, wird die Feinstaubbelastung meist innerhalb von wenigen Stunden verweht; haben wir eine Inversionswetterlage, kann sich eine erhöhte Belastung auch über einen Tag und mehr in der Luft halten. Informationen zu den meteorologischen Bedingungen während der Silvesternacht finden Sie nun neu unter https://www.lubw.baden-wuerttemberg.de/luft/messwerte-meteorologie#karte . Es handelt sich um aktuelle meteorologische Messwerte des Luftmessnetzes Baden-Württemberg. Wichtiger Hinweis : Die meteorologischen Daten der LUBW durchlaufen keine qualitätssichernde Beurteilung, dennoch vervollständigen sie zusammen mit den Schadstoffdaten das Angebot und geben einen Einblick in die meteorologische Situation vor Ort. Weitere Informationen können Sie unseren Pressemitteilungen zur Neujahrsnacht aus den Jahren 2020 und 2018 entnehmen. Diese Meldungen geben die entsprechenden Entwicklungen für die beiden unterschiedlichen Wetterlagen sehr gut wieder: Inversionswetterlage 02.01.2020 Hohe Belastung der Luft mit Feinstaub am Neujahrstag Feinstaub: Vom Winde verweht 01.01.2018 Baden-Württemberg nach der Silvesternacht Nachfolgend finden Sie die verlinkte Liste der LUBW-Messstationen zur Überwachung der Luftqualität in Baden-Württemberg, an denen Feinstaub-PM10 erfasst wird: Messstelle Aalen Baden-Baden Bernhausen Biberach Eggenstein Freiburg Freiburg Schwarzwaldstraße Friedrichshafen Gärtringen Heidelberg Heilbronn Heilbronn Weinsberger Straße-Ost Karlsruhe Reinhold-Frank-Straße Karlsruhe-Nordwest Kehl Konstanz Ludwigsburg Mannheim Friedrichsring Mannheim-Nord Neuenburg Pfinztal Karlsruher Straße Pforzheim Reutlingen Reutlingen Lederstraße-Ost Schramberg Oberndorfer Straße Schwarzwald-Süd Schwäbische Alb Schwäbisch Hall Stuttgart Am Neckartor Stuttgart Arnulf-Klett-Platz Stuttgart Hohenheimer Straße Stuttgart-Bad Cannstatt Tauberbischofsheim Tübingen Tübingen Mühlstraße Ulm Villingen-Schwenningen Weil am Rhein Wiesloch Bei Rückfragen wenden Sie sich bitte an die Pressestelle der LUBW. Telefon: +49(0)721/5600-1387 E-Mail: pressestelle@lubw.bwl.de

Ermittlung des Potenzials von Speläothemen zur Rekonstruktion von (kurzfristigen) Phasen extremen Klimas

Ziel dieses Antrags ist es, das Potenzial von Speläothemen für die Rekonstruktion von (kurzlebigen) Phasen und Ereignissen extremen Klimas, wie besonders niedrigen Temperaturen, extreme, Niederschlagsmengen oder hohen Windgeschwindigkeiten, zu ermitteln. Solche Extremereignisse treten selten auf, verursachen aber oft große Schäden mit schwerwiegenden Folgen für Bevölkerung und Ökosysteme der betroffenen Region. Ein besseres Verständnis der Ursachen und Randbedingungen von Extremereignissen ermöglicht eine bessere Prognose ihres Auftretens in der Zukunft, was wesentlich ist für das Treffen entsprechender Vorkehrungen.Speläotheme bieten präzise datierte Multi-Proxy-Zeitreihen mit nahezu jährlicher Auflösung und haben somit ein großes Potenzial als Archiv von Extremereignissen. Allerdings werden die in Speläothemen gespeicherten Proxy-Signale im Aquifer über der Höhle in einem gewissen Umfang geglättet, weshalb die Sensitivität der jeweiligen Höhlensysteme und Proxys für die Rekonstruktion vergangener Extremereignisse bestimmt werden muss. Der Schwerpunkt dieses Antrags liegt auf dem 8.2 ka Event und den letzten 2000 Jahren. Das 8.2 ka Event war die extremste Klimaanomalie des Holozäns und spiegelt die Auswirkungen eines enormen Süßwassereintrags in den Nordatlantik während eines Interglazials wider. In den letzten 2000 Jahren wurden mehrere hundertjährige Klimaschwankungen identifiziert (z.B. die Mittelalterliche Warmzeit und die Kleine Eiszeit). Zusätzlich konnten andere, kurzlebige Klimaanomalien festgestellt werden, wie z.B. das historische Magdalenenhochwasser im Juli 1342 AD oder Hitze und Trockenheit in Europa von 1540 AD. Manche Ereignisse wurden durch Vulkanausbrüche ausgelöst (z.B. das Jahr ohne Sommer 1816 AD durch die Tambora Eruption 1815 AD).Mehrere Speläotheme, die während des 8.2 ka Event und der letzten 2000 Jahre wuchsen, aus drei Höhlen in Deutschland stehen zur Verfügung. Für alle drei Höhlen wurden langfristige Monitoring-Programme eingerichtet, was eine Voraussetzung ist, um die Prozesse in den Höhlen zu verstehen und die Proxy-Signale der Speläotheme zu interpretieren. Wir werden stabile Isotope und Spurenelemente in den entsprechenden Abschnitten der Stalagmiten mit sehr hoher Auflösung (jährlich) analysieren, und die Proben mittels MC-ICPMS 230Th/U-Datierung präzise datieren. Die Identifizierung der am besten geeigneten Proxys für die Rekonstruktion der Extremereignisse wird unter Verwendung eines quantitativen Modells basierend auf meteorologischen und Monitoring-Daten durchgeführt. Die Kombination aus präzise datierten, hochaufgelösten Multi-Proxy-Records und einem quantitativen Modell stellt eine solide Basis dar, um (i) geeignete Proxys für die Rekonstruktion der Extremereignisse zu identifizieren und (ii) bestimmte Ereignisse in verschiedenen Speläothemen zu vergleichen. Dies ermöglicht die Bestimmung von Zeitpunkt, Dauer und Struktur der Ereignisse.

Global filtered tropospheric NO2 slant column densities derived from 6-year averages of TROPOMI measurements over water for shipping signal detection

This dataset contains 6-year averages of global filtered tropospheric NO2 slant column densities (tSCDs) retrieved from the Sentinel-5 Precursor (S5P) satellite sensor TROPOMI (Tropospheric Monitoring Instrument) for the period from 1 May 2018 to 30 April 2024. All data are available on a 0.03° x 0.03° grid. The NO2 tSCDs are derived from the total slant columns by subtracting the across-track NO2 slant column stripe offset and spatially averaged stratospheric vertical column densities (VCDs) multiplied with the stratospheric air mass factor (AMF), provided in the TROPOMI NO2 product. The filtered NO2 tSCDs are developed to detect global shipping signals in the NO2 TROPOMI data. Therefore, only pixels over water are available in this dataset. The filtering methods include a high-pass filter with different box sizes (1°, 0.5°, 0.25°) and a Fourier filter. In addition, different flagging criteria are applied to the data with the standard box size of 1° for the high-pass filtering: no flagging, quality (qa) flagging, cloud fraction (CF) flagging, cloud height (CH) flagging, wind speed (wind) flagging, and sun glint (sg) flagging.

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

1 2 3 4 5243 244 245