This dataset comprises key carbonate chemistry parameters measured and calculated in incubation experiments under different experimental conditions. pH, water temperature, and salinity were measured with a WTW multimeter (MultiLine® Multi 3630 IDS). Total alkalinity was determined by open-cell titration with an 888 Titrando (Metrohm). Saturation state of calcite and aragonite were calculated using phreeqpython, a Python wrapper of the PhreeqC engine (Vitens 2021) with pH, water temperature, total alkalinity, and major ions as major input, and phreeqc.dat as database for the thermodynamic data (Parkhurst and Appelo 2013). As the original Elbe water was supersaturated with carbon dioxide (CO2) with respect to the atmosphere, its partial pressure of CO2 (pCO2) level decreased during the incubation period with open flasks, which caused an adjustment of calcite saturation state (ΩC) for ambient air conditions. To adapt for the impact of pCO2 variations during the experiment, saturation state of calcite and aragonite was calculated assuming an equilibrium with an atmospheric pCO2 of 415 ppm (normalized ΩC and normalized aragonite sautration state ΩA). Since ion concentrations were measured for only a small number of samples, the ion concentrations of the remaining samples were reconstructed using stoichiometry based on the initial solution composition and total alkalinity. The concentrations of conservative ions (Na+, K+, Cl-, SO42-) were assumed remain constant, while ions related to carbonate precipitation (Ca2+, Mg2+) were calculated based on changes in measured alkalinity (see Figure 5 of the associated paper). Detailed analysis and calculation procedures are described in the Method section of the associated paper.
Gewinnung von analytischen Daten ueber die Schadstoffbelastung von Oberflaechengewaessern in Zusammenhang mit der Sicherung der Trinkwasserversorgung und zur Verbesserung der Wasseraufbereitungstechnologie durch Identifizierung und quantitative Bestimmung organischer Mikroverunreinigungen. Selektive quantitative Analyse von Schadstoffen, die Heteroelemente enthalten (z.B. F, Cl, Br, N, P, S) durch spezifische Detektoren (Mikrowellenplasmadetektor). Dadurch besteht die Moeglichkeit, gezielt spezielle Substanzklassen von hygienischer und toxikologischer Bedeutung zu analysieren.
Zu den anlagenbezogenen Wasserbucheinträgen zählen u.a. folgende wasserrechtliche Tatbestände: Benutzungen von Grundwasser und/oder Oberflächenwasser gemäß § 9 WHG i.V.m. § 5 SächsWG; Einleiten von Abwasser in Gewässer gemäß § 57 WHG (Direkteinleitung) i.V.m. § 51 SächsWG; Einleiten von Abwasser in öffentliche Abwasseranlagen gemäß § 58 WHG (Indirekteinleitung) i.V.m. § 53 SächsWG oder Einleiten von Abwasser in private Abwasseranlagen gemäß § 59 WHG; Errichtung, Betrieb, wesentliche Änderung, Unterhaltung und/oder Stilllegung von Anlagen in, an, über und unter oberirdischen Gewässern gemäß § 36 WHG i.V.m. § 26 SächsWG; Errichtung, Betrieb sowie die wesentliche Veränderung oder Beseitigung einer Abwasserbehandlungsanlage gemäß § 60 WHG i.V.m. § 55 SächsWG; Errichtung, Betrieb sowie die wesentliche Veränderung oder Beseitigung von öffentlichen Wasserversorgungsanlagen gemäß § 55 SächsWG i.V.m. § 50 Abs. 4 WHG; Nutzung von Fernwasser gemäß § 44 SächsWG i.V.m. § 50 Abs. 2 WHG; Errichtung, Betrieb und/oder wesentliche Änderung von Anlagen zum Lagern, Abfüllen oder Umschlagen wassergefährdender Stoffe gemäß § 63 WHG; Gewässerausbau sowie Errichtung von Deich- und Dammbauten gemäß § 68 WHG i.V.m. § 63 SächsWG; Herstellung, wesentlichen Änderung oder Beseitigung eines Flutungspolders gemäß § 63 SächsWG; Übertragen der Unterhaltungslast zur Gewässerunterhaltung gemäß § 40 WHG i.V.m. § 33 SächsWG, Übertragen der Pflicht zur Abwasserbeseitigung gem. § 56 WHG, Übertragen der Pflicht zur öffentlichen Wasserversorgung gemäß § 43 SächsWG; Duldungs- und Gestattungsverpflichtungen nach § 99 SächsWG (Zwangsrechte)