Der Fachbereich Umwelt und Grün der Stadt Bottrop und die Ruhr-Universität Bochum haben auf dem Grundstück eines Bottroper Unternehmens eine Regenwasserverdunstungsanlage errichtet, die als Pilotprojekt zur Klimawandelanpassung gilt.
Ziel des Vorhabens ist es, neben den etablierten Methoden zur Abkopplung von Niederschlagswässern (wie beispielsweise Versickerung), die Möglichkeit zur Verdunstung als eigenständigen und innovativen Ansatz einer ortsnahen Regenwasserbewirtschaftung zu erproben. Neben der Schaffung einer Dimensionierungsgrundlage für Verdunstungsanlagen soll innerhalb des Projektes die Frage beantwortet werden, inwieweit eine derartige Anlage der Erwärmung des Stadtklimas entgegen wirken kann.
Im Rahmen des Vorhabens wird das anfallende Niederschlagswasser in einem stillgelegten Feuerlöschbecken gesammelt und über mit Schilf bestückte Beete zur Verdunstung gebracht. Durch eine optimale Wasserversorgung und die verdunstungsstarke Bepflanzung soll die Verdunstung deutlich erhöht werden. Die Beschickung der Beete erfolgt über Pumpen, Verteiler und Steuerungen, welche über Solaranlagen mit Strom versorgt werden. Die berechnete Dimensionierung der Verdunstungsanlage wird durch Messwerte überprüft und optimiert. Des Weiteren werden die kleinklimatischen Auswirkungen der erhöhten Verdunstung auf dem Grundstück mit Vergleichsmessungen auf benachbarten Grundstücken verglichen und bewertet.
In diesem Projekt soll anhand Labor- und Freilanduntersuchungen die Passierbarkeit von Schlitzpässen untersucht werden. Hierbei werden sowohl der Einfluss des Unterwasserstandes und Dotationswasser als auch von unterschiedlichen Beckengeometrien, Wendebecken und Anlagegesamtlänge analysiert. Das Projekt wird sowohl in einem Modellfischpass an der Bundesanstalt für Wasserbau als auch an ausgewählten Fischaufstiegsanlagen an BWaStr durchgeführt. Zur Bewertung der Passierbarkeit sollen unter anderem optische Fischerfassungssysteme zum Einsatz kommen. Um genaue Aussagen über die Bewegungsmuster von unterschiedlichen Fischarten in Fischaufstiegsanlagen treffen zu können, wird zudem die passive Transponder Technik (HDX) verwendet
Objective: Demonstration of energy saving technics in large public swimming pools, use of unglazed solar collectors in combination with a heat pump. The innovative aspect is the use of the solar system during times when the global radiation is low, bad weather, or not existing, night time. Use of heat recovery units for exhaust air of indoor swimming pools. Heat recovery from filter back-flush water and shower water. Ülzen: 1,500 m2 unglazed collectors, system Solaroll EPDM innovative system with two flow systems, pool water and antifreeze. Inzell: 1,200 unglazed collectors, system Episol EPDM. Estimated energy savings: Ülzen: 480 TOE/a Inzell: 120 TOE/a. General Information: 1) UELZEN (Northern Germany between Hannover and Hamburg). Total water area 2993 m2. Summer use only 1990 m2 open air. Winter use only 1003 m2 indoor. Total solar area 1,500 m2 unglazed (Solaroll EPDM). The solar area is a combination of a direct flow, for Summer use, and an indirect flow, filled with antifreeze and linked to an electric driven heat pump. The solar system is gluwed on the horizontal roofing of the indoor swimming pool. Auxiliary heating is delivered from an adjacent diesel engine driven power station and a gas fired boiler. Heat recovery utilities are installed for the filter black flushing and the exhaust air from the indoor swimming pool. The outdoor bassins have a motor driven pool cover to reduce heat losses during the night. 2) INZELL (Bavaria near Salzburg). Total water area 3316 m2. Summer use only 2981 m2 open air. All year use 280 m2 indoor. All year use 45 m2 outdoor. Total solar area 1153 m2 unglazed (Episol, EPDM). The unglazed collectors are installed on the flat roof of the Summer vestiairies. Direct, one-circuit flow of the pool's water. During bad weather conditions and at night an already existing heat pump may be linked to the solar system instead to a cold river coming down from the mountains. Auxiliary heating may be delivered also from an old fired furnace. A heat recovery unit is installed in the pool's hall ventilation system. Achievements: Results of Ülzen: The first monitoring period in 1985 showed that the energy collected (solar direct plus heat pump) from the double circuit collector was much smaller than estimated. This is partly due to shorter running times of the heat pump but partly also from a too optimistic calculation of the manufacturer. Solar direct use during Summer (8.5 - 18.9.1985): 130 kWh/m2, 195 MWh, 75 per cent furnace efficiency. 22 TOE/a, Solar indirect via heat pump (1.9.84-31.10.1985). 210 kWh/m2, 315,3 MWh, 35.4 TOE, Other savings: Heat recovery from the exhaust air of the indoor swimming pool which is closed during Summer. Energy recovered (1.1.85-8.5.1985) 216 MWh or 13.0 TOE. Heat recovery from filter black flushing water (1.1.85-31.12.1985) 115 MWh or 13.0 TOE. Total energy savings per year approx. (influence of pool cover not included) 95/a. Rresults of inzell. The first monitored season in 1985 ...
Objective: The energy consumption of public swimming pools should be cut by different facilities: - Pool cover by night - Heat recovery from shower water, filter back-fhushing water and ventilation system in indoor pool - Solar installation for pool's heating, combined with heat pump for indoor pools. The energy consumption should be cut drasticly. The different technique were demonstrated in four different pools: - AHAUS collector surface 2.164 m2 - Schwalmtal exchanger surface 807 m2 - Stadtsteinach collector surface 900 m2 - Unna collector surface 1.134 m2. General Information: The contractor is the 'Bundesinstitut fur Sportwissenschaft' the Federal Institut for Sport Science in Cologne. The Federal Government covers the remaining cost, the individual towns have to ensure that the pool techniques correspond to the latest hygenical requirements, especially the filter cycle time of the bassin. AHAUS (near the Dutch border). Open air swimming pool, built in 1982, summer use only, with a total water surface of 2 350 m2 at 22-24 deg.C. Installed energy saving facilities: pool cover, heat recovery from filter back-flushing water. Solar installation: 1 661 single glazed collectors 503 m2 unglazed collectors. (total 2 164 m2). The solar field is partly above the car park on metallic rack construction. Schwalmtal (near Düsseldorf) All year indoor swimming pool, built in 1982 with one bassin of 250 m2 at a water temperature of 28 deg C, and a children pool with 20 m2 at 30 deg C. The total building volume is 13 963 m3. The installed energy facilities are improved building insulation, heat recovery from filter back-flushing water, showers, ventilation of the hall and heat pump combined with unglazed solar collectors (energy roofing) and a stack air heat exchanger. In order to improve the output of the heat recovery units of the shower water and the ventilation separate small heat pumps are installed inside the respective utilities. All the heat pumps are electrical driven. The auxiliary heating is by natural gas. The boiler room is in a near by school. Stadtsteinach (Baveria near Bayreuth). Open air swimming pool, summer use only, with a total water surface of 1 123 m2 (temperature variable). The installed energy saving facilities are: pool cover and solar installation of 900 m2. The single glazed collectors are mounted on wooden racks. The solar circuit is functioning in a closed circuit, the heat is transferred via a plated heat exchanger. The installation is a retrofit on an existing pool, finished in 1982. Unna (near Dortmund). All year swimming pool, some of the open air basins are used in summer only. Some of them throughout the year. The pool was finished in 1982. The total water surface in summer is 1 341 m2, in winter it is 481 m2 of which 422 m2 are in the open air. The installed energy saving facilities are: pool air: pools heat recovery from ventilation and filter back-flushing water, gas driven heat pump linked to 1 134 m2 of unglazed ...
Die Hochwasserentlastung (HWE) der Talsperre Stollberg, erbaut 1954, wurde auf der Grundlage einer Ist-Zustandsanalyse des Institutes für Wasserbau und THM umgeplant. Ziel dieser Untersuchungen war die Überprüfung der neuen Variante des Tosbeckens der Hochwasserentlastung mit Hilfe eines dreidimensionalen Simulationsprogrammes.