API src

Found 1823 results.

Related terms

Wassernutzung privater Haushalte

<p>Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt.</p><p>Direkte und indirekte Wassernutzung</p><p>Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter <a href="https://www.umweltbundesamt.de/daten/wasserwirtschaft/oeffentliche-wasserversorgung">Trinkwasser</a>, etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln.</p><p>Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“).</p><p>Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde.</p><p>Deutschlands Wasserfußabdruck</p><p>Das virtuelle Wasser ist Teil des <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserfussabdruck">„Wasserfußabdrucks“</a>, der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen:</p><p><strong>Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³)&nbsp;+ Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³)</strong></p><p>Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %.</p><p>Grünes, blaues und graues Wasser</p><p>Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält.</p><p>Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch:</p><p>Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).</p>

ThWIC: Entwicklung eines verfahrenstechnischen und technologischen Gesamtkonzeptes zur Realisierung des Zero-Liquid-Discharge-Ansatzes für die Wasserwirtschaft einer Klinik am Beispiel des Universitätsklinikums Jena, Teilprojekt E

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt C

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Globale Abschätzung von Wassermangel in Karstregionen in Zeiten des globalen Wandels

Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.

Ressourceneffiziente Erzeugung hochwertiger Proteine und Fasern aus Schmalblättrigen Bitterlupinen für die (vegane) Humanernährung, Teilprojekt C

LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.

Durchlässigkeits- und Fluxmessungen in porösen Aquifern

Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.

Trockenheit in Deutschland – Fragen und Antworten

<p>Was bedeuten Trockenheit und Dürre für Vegetation, Grundwasser und Landwirtschaft? Ist das bereits der Klimawandel? Und wie können wir uns anpassen?</p><p>Trockenheit - aktuelle Situation</p><p>Der Deutsche Wetterdienst (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) meldet, dass es deutschlandweit seit 1931 noch nie so trocken war wie 2025 von Anfang Februar bis Mitte April (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250415_pm_trockenheit.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 15.04.25</a>). Der März 2025 war mit einem Deutschlandmittel von nur 21% des Niederschlages im Vergleich zur Periode 1991-2020, der sechsttrockenste März seit 1881. Vor allem im Norden gab es größere Gebiete in denen nur wenige Liter pro Quadratmeter gefallen sind. Das starke Niederschlagsdefizit hat, vor allem in Teilen des norddeutschen Binnenlands, die Feuchte der oberen Bodenschichten markant unter die für die Jahreszeit üblichen Werte sinken lassen (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250402_pm_trockenheit.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 02.04.25</a>). Im Mai fielen mit rund 48 Litern pro Quadratmeter (l/m²) lediglich rund 68 Prozent der üblichen Niederschlagsmenge der Referenzperiode 1961–1990 (71 l/m²). Auch im Vergleich zur moderneren Periode 1991–2020 (70 l/m²) entsprach dies nur gut 68 Prozent (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250530_pm_mai.pdf?__blob=publicationFile&amp;v=2">DWD Pressemitteilung vom 30.05.2025</a>). Auch der Juni 2025 war in Deutschland außergewöhnlich warm, viel zu trocken und üppig sonnig (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250630_deutschlandwetter_juni.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 30.06.2025</a>).</p><p>Im Winter 24/25 fielen mit rund 155 Litern pro Quadratmeter (l/m²) nur etwa 82 Prozent des durchschnittlichen Niederschlags der neuen Referenzperiode 1991–2020 (190 l/m²), sodass bereits der Winter insgesamt deutlich zu trocken ausfiel. Besonders niederschlagsarm war laut DWD der Februar, in dem nur etwa die Hälfte der üblichen Menge gemessen wurde (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250227_pm_winter.pdf?__blob=publicationFile&amp;v=2">Pressemitteilung DWD vom 27.02.25</a>). Der März 2025 gehörte zu den trockensten seit Messbeginn im Jahre 1881.<strong> Mit </strong>19 Liter pro Quadratmeter (l/m²) war es gegenüber der Referenzperiode 1991 bis 2020 (57 l/m²) rund 70&nbsp;% trockener. Vor allem der Norden und Nordosten des Landes litt im März unter Trockenheit, dort fielen in der Fläche nur um 9 l/m², wodurch der Oberboden besonders stark austrocknen konnte (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250331_pm_maerz.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 31.03.25</a>). Die Trockenheit fand im Juni ihre Fortsetzung. Mit gerade 61 Liter pro Quadratmeter (l/m²) war der zurückliegende Juni erneut viel zu trocken. Damit war es seit Februar der fünfte Monat in Folge, der weniger Niederschlag brachte als im klimatologischen Mittel (<a href="https://www.dwd.de/DE/presse/pressemitteilungen/DE/2025/20250630_deutschlandwetter_juni.pdf?__blob=publicationFile&amp;v=3">DWD Pressemitteilung vom 30.06.2025</a>).</p><p>Monatliche Klimastatusberichte veröffentlicht der Deutsche Wetterdienst <a href="https://www.dwd.de/DE/presse/pressemitteilungen/pressemitteilungen_archiv_2025_node.html">hier</a>.</p><p>Inwieweit in den Winter- und Frühlingsmonaten der Bodenwasservorrat aufgefüllt wird und ein Defizit der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ ausgeglichen werden kann, ist regional unterschiedlich. Der <a href="https://www.dwd.de/DE/fachnutzer/landwirtschaft/appl/bf_view/_node.html">Bodenfeuchteviewer</a> des Deutschen Wetterdienstes zeigt Ende Juli 2025 im Oberboden in 20-30 cm Tiefe in der Mitte Deutschlands in den meisten Landesteilen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trockenstress#alphabar">Trockenstress</a>⁠, nur im Norden in Schleswig-Holstein, in Mecklenburg-Vorpommern und Brandenburg und im Süden in den Alpen und im Alpenvorland sowie in Mittelgebirgsregionen ist der Oberboden gut mit Wasser versorgt. In einer Tiefe von 180 -190 cm besteht Trockenstress im Pfälzer Wald und im nördlichen Bayern. Die übrigen Landesteile Deutschlands zeigen in dieser Tiefe zum Teil leichten Trockenstress, sonst aber eine gute Versorgung mit Wasser bis hin zu Sauerstoffmangel (Stand 30.07.2025).</p><p>Der „<a href="https://www.ufz.de/index.php?de=37937">Dürremonitor Deutschland</a>“ des Helmholtz Zentrums für Umweltforschung (UFZ) setzt die aktuellen Werte der Bodenfeuchte ins Verhältnis mit langjährigen statistischen Auswertungen. Dieser zeigt Ende Juli 2025 im Oberboden bis 25 cm Tiefe bis auf Brandenburg, Mecklenburg-Vorpommern und Schleswig-Holstein deutschlandweit Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠. Im Gesamtboden bis in 1,8 m Tiefe herrscht nahezu in allen Teilen Deutschlands Dürre (Stand 30.07.2025).</p><p>Gibt es in Deutschland ein Problem mit Wasserknappheit? </p><p>Wir haben in Deutschland ein potenzielles ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠, gemittelt über viele Jahre, von 176 Milliarden Kubikmeter pro Jahr. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠ ist eine Größe des regionalen Wasserkreislaufs und umfasst die Menge an Grund- und Oberflächenwasser, die wir theoretisch nutzen können. In die Berechnung der jährlich ermittelten erneuerbaren Wasserressourcen fließen der Niederschlag, die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ sowie die Zuflüsse nach und die Abflüsse aus Deutschland ein. Neben dem über viele Jahre gemittelten Wasserdargebot zeigt das jährliche Wasserdargebot starke witterungsbedingte Schwankungen. So lagen die erneuerbaren <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserressourcen</a> im Jahr 2023 als Folge der ungewöhnlich hohen Niederschläge im Dezember 2023 mit 212 Milliarden Kubikmeter deutlich oberhalb des langjährigen Mittels.&nbsp;</p><p>Die <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserentnahmen sind über die letzten Jahrzehnte deutlich zurückgegangen</a>. Das liegt an Wasserkreislaufführung in der Industrie, an der Reduzierung der Entnahme von Kühlwasser für Kraftwerke und Einsparungen bei der öffentlichen Wasserversorgung. Derzeit lassen sich die zukünftigen Bedarfe (insbesondere neuer Technologien wie Wasserstofferzeugung und Kühlung von Rechenzentren, aber auch erhöhte Bewässerungsbedarfe in der Landwirtschaft) auf Bundes- und Länderebene nicht hinreichend quantifizieren, weil potentielle Entwicklungen nicht oder nur unzureichend und uneinheitlich vorausgesehen werden können. Das Umweltbundesamt lässt deshalb die <a href="https://www.umweltbundesamt.de/dokument/entwicklung-des-zukuenftigen-wasserbedarfs-in">zukünftige Entwicklung der Wasserbedarfe</a> genauer untersuchen um neben besseren Prognosen zu den verfügbaren Wassermengen auch die Entwicklung der Wasserbedarfe, also der Entnahmen, besser einschätzen zu können.&nbsp;</p><p>Die <a href="https://www.umweltbundesamt.de/daten/wasser/wasserwirtschaft/oeffentliche-wasserversorgung">öffentliche Wasserversorgung</a> entnimmt mit 3,0 Prozent nur einen Bruchteil der erneuerbaren Wasserressourcen. In privaten Haushalten ist die Wassernutzung von 1990 bis heute erheblich zurückgegangen (von 144 Litern/Person/Tag 1991 auf 125 Liter 2022). Allerdings sieht man zwischen 2013 wieder einen Anstieg der Wassernutzung im Haushalt von 121 Liter /Person und Tag auf zwischenzeitlich 129 Liter / Person und Tag im Jahr 2019. Der <a href="https://www.bdew.de/presse/presseinformationen/zahl-der-woche-121-liter-leitungswasser/">BDEW</a> gibt die private Wassernutzung für das Jahr 2023 mit 121 Litern/Person/Tag an. Insgesamt gibt es erhebliche Unterschiede zwischen den Bundesländern (s. S. 56 und 57 der <a href="https://www.umweltbundesamt.de/publikationen/wasserwirtschaft-in-deutschland-grundlagen">Broschüre „Wasserwirtschaft in Deutschland“</a>).</p><p>Bisher gibt es in Deutschland keinen flächendeckenden Wasserstress. Man spricht von Wasserstress, wenn die gesamte Wasserentnahme eines betrachteten Jahres mehr als 20 Prozent des langjährigen mittleren Wasserdargebots beträgt. Das ist in Deutschland nicht der Fall, es sind nach der neusten Erhebung <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">10,1 Prozent (2022)</a>. Die Schwelle zum Wasserstress wurde in Deutschland letztmalig 2004 überschritten, die gesamten Wasserentnahmen lagen damals laut Statistischem Bundesamt bei 20,2 Prozent.</p><p>Entscheidend ist aber das Wasserdargebot vor Ort. Hier gibt es deutliche regionale Unterschiede in der Wasserverfügbarkeit. Dies hat sich auch in den trockenen Jahren 2018, 2019, 2020 und 2022 gezeigt. In einigen Orten gab es lokale oder regionale Engpässe gegeben. Dies hatte verschiedene Ursachen. Eine Rolle spielten die unterschiedlichen klimatischen Randbedingungen. Weiterhin kam eine hohe Wassernutzung zu bestimmten Tageszeiten besonders bei warmem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>⁠ hinzu, die die Verteilungssysteme einiger Wasserversorgungsunternehmen an die Grenzen brachten (Spitzenwasserbedarf). Teilweise konnte nicht auf zusätzliche örtliche Ressourcen zugegriffen werden, da bei diesen die <a href="https://www.umweltbundesamt.de/themen/wasser/grundwasser/nutzung-belastungen/faqs-zu-nitrat-im-grund-trinkwasser">Nitratwerte zu hoch</a> waren. Dies ist oft ein Ergebnis zu hoher landwirtschaftlicher Düngung.&nbsp;</p><p>Aufeinander folgende trockene Sommer mit zusätzlich wenig Niederschlag im Winter haben negative Auswirkungen auf die Wasserverfügbarkeit. Die Landwirtschaft, die Wasserversorgung, die Wasserführung in Gewässern, Ökosysteme wie Feuchtgebiete und Wälder und auch weitere wasserbezogene Nutzungen wie die Schifffahrt können betroffen sein. Darauf müssen sich alle Wassernutzer*innen, auch die Wasserversorgungen, einstellen.</p><p>Häufigere trockene Sommer bedeuten auch, dass der Bedarf zur Bewässerung in der Landwirtschaft steigen wird. Derzeit hat die Bewässerungslandwirtschaft in Deutschland mit einer <a href="https://www.umweltbundesamt.de/daten/wasser/wasserressourcen-ihre-nutzung">Wasserentnahme von ca. 2,5 Prozent&nbsp; der gesamten Entnahmemenge</a> noch eine geringe Bedeutung. Nach Angaben des <a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Tabellen/bewaesserungsmoeglichkeiten.html%20">Statistischen Bundesamtes</a>&nbsp;hat die für die Bewässerung ausgestattete Fläche von 2009 bis 2019 jährlich um 1,86&nbsp;% zugenommen und lag 2022 bei 791.000 Hektar, tatsächlich bewässert wurden 554.000 Hektar landwirtschaftliche Fläche in Deutschland (2022). Die Beregnungsbedürftigkeit wird deutschlandweit tendenziell zunehmen, allerdings ist dies regional sehr unterschiedlich. Die Bewässerungsmenge ist stark abhängig von der landwirtschaftlichen Produktion. So wird der Obst- und Gemüsebau bisher stärker bewässert, als dies für viele Ackerkulturen der Fall ist. Hingegen werden Wälder, die ebenfalls stark unter der anhaltenden Trockenheit leiden, nicht bewässert.</p><p>Trockenperioden, veränderte Niederschlagsmuster und damit einhergehend sinkende Grundwasserspiegel und Flusswasserstände können zu einem Ungleichgewicht zwischen Wasserbedarf und -dargebot führen. Die daraus entstehenden regionalen und saisonalen Knappheitsphasen verschärfen Nutzungskonflikte zwischen verschiedenen Wassernutzungen wie beispielsweise Energieerzeugung, Trinkwasserversorgung, Industrie und Landwirtschaft und führen zu Konflikten mit den Wasserbedarfen der Ökosysteme. Künftig werden also mehr Nutzer*innengruppen als heute um eine knapper werdende Ressource konkurrieren. Deshalb müssen wir über eine gerechte Verteilung bei langanhaltender Trockenheit, also über eine <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/nationale-wasserstrategie">Priorisierung</a> nachdenken, die auch die Bedürfnisse der (Gewässer-)Ökosysteme berücksichtigt. Aktuell arbeitet das Umweltbundesamt zusammen mit der Bund-Länder- Arbeitsgemeinschaft Wasser (⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠) an <a href="https://www.umweltbundesamt.de/dokument/entwicklung-von-leitlinien-fuer-den-umgang">Leitlinien zu Wasserknappheit</a>, damit die zuständigen Behörden &nbsp;regional transparente Entscheidungen zur Verteilung von Wasser treffen können, die auf harmonisierter wissenschaftlicher und wasserrechtlicher Grundlage basieren. Alle Wassernutzer*innen sind außerdem aufgefordert, die Wasserressourcen zu schonen, d.h. mit Wasser sparsam umzugehen und das entnommene Wasser so effizient wie möglich zu verwenden sowie die Gewässer und das Grundwasser nicht zu verschmutzen.</p><p>Um bei Wasserknappheit nicht nur auf Oberflächengewässer und Grundwasser zurückzugreifen, kann Wasserwiederverwendung, d.h. die Nutzung von aufbereitetem Wasser, eine Alternative darstellen. Dies ist in vielen südeuropäischen Ländern bereits gängige Praxis. Seit 2020 ist eine neue <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserwiederverwendung/eu-verordnung-zu-wasserwiederverwendung">EU-Verordnung über Mindestanforderungen an die Wasserwiederverwendung</a> für die landwirtschaftliche Bewässerung in Kraft, die seit Juni 2023 auch in Deutschland gilt. Allerdings sind an die <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserwiederverwendung">Wasserwiederverwendung</a> strenge hygienische und Umweltanforderungen zu stellen.</p><p>Was bedeutet „Bodenfeuchte“, und welche Rolle spielt sie für die Trockenheit?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ wird über den Wassergehalt und die vom Porenraum des Bodens ausgehende Bodenwasserspannung beschrieben. Je nach Porenraum und Bodenfeuchte haben die Böden eine unterschiedliche Fähigkeit, Wasser zu speichern. Wasser ist mit der Bodensubstanz und der Bodenluft eines der drei Bestandteile des Bodens. Ohne Bodenwasser und Bodenluft ist es kein Boden, wie wir ihn als Produktionsgrundlage vieler unserer Nahrungsmittel kennen. Weiterhin muss bedacht werden, dass nur ein Teil des im Boden enthaltenen Wassers wirklich für die Pflanzen verfügbar ist.</p><p>Welche Folgen kann Trockenheit für die Ernteerträge bzw. die Pflanzen im Allgemeinen haben? </p><p><strong>Landwirtschaft:</strong>&nbsp;Trockenheit vermindert das Pflanzenwachstum und die Erträge. Mit dem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ ändert sich das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>⁠, und damit ändern sich die Bedingungen für die Landwirtschaft immer grundlegender. Die Veränderungen sind mittlerweile regelrecht mit den Händen zu greifen und spiegeln sich auch in den vergangenen <a href="https://www.bmel.de/SharedDocs/FAQs/DE/faq-erntedaten-erntebericht/FAQ-erntedaten-erntebericht_List.html#f71088">BMEL Ernteberichten </a>.</p><p>Normalerweise können Pflanzen während einer Trockenperiode, in der der Wasserbedarf die Niederschlagsmenge übersteigt, auf den Wasserspeicher im Boden zurückgreifen und diese Phase überstehen. Ist der Wasserspeicher jedoch aufgrund von vorangegangener Trockenheit deutlich reduziert, kann es bereits bei kurzzeitig ausbleibenden Niederschlägen zu Ertragsverlusten kommen.&nbsp;</p><p>Ein aus Umweltsicht problematischer Nebeneffekt von Trockenheit und Ernteausfällen ist, dass diese in aller Regel zu hohen Nährstoffüberschüssen von Stickstoff und Phosphor führen, weil die Kulturpflanzen nicht in der Lage waren, die Düngemengen vollständig aufzunehmen. Die so entstehenden Nährstoffüberschüsse haben vielfältige negative Umweltwirkungen, etwa durch die Beeinträchtigung der Wasserqualität, negative Wirkungen auf die Artenvielfalt und erhöhte Treibhausgasemissionen (z.B. in Form von Lachgas).</p><p><strong>⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Erosion#alphabar">Erosion</a>⁠ durch Wind</strong>: Starker Wind bewirkt einen Verlust humusreichen Feinmaterials aus den Ackerflächen durch Erosion. An diesen Stellen sind dann geringeres Pflanzenwachstum und in der Erntezeit geringere Erträge festzustellen – noch bis in die folgenden Jahre und Jahrzehnte. Auch an Stellen, in die das Feinmaterial eingeweht wird, kommt es zunächst zu Ertragseinbußen, wenn sich das Material dort auf Keimlingen und Pflanzen abgelagert hat. Besonders groß ist die Gefahr der Winderosion auf Ackerflächen ohne geschlossene Bodenbedeckung. Kommen dann noch im Frühjahr starke Winde hinzu oder entsteht Erosion durch die Bewirtschaftung (Bodenbearbeitung bei extremer Trockenheit und Wind), kann humusreiches Feinmaterial durch Winderosion verdriftet, d.h. ausgeweht werden. Die Bodenfruchtbarkeit und das Pflanzenwachstum leiden darunter.&nbsp;</p><p><strong>Straßenbäume</strong>: Bäume an Straßen, d.h., Alleen, Baumreihen oder auch Bäume im urbanen Raum wachsen häufig unter schlechteren Standortbedingungen als Bäume in der freien Natur – neben dem begrenzten Raum für Wurzelwachstum können die Verdichtung des Bodens, Schadstoffe oder Streusalz die Bäume schädigen. Trockenheit verschlechtert diese Standortbedingungen zusätzlich: Sie verschärft das durch Versiegelung und Verdichtung ohnehin schon bestehende Problem der unzureichenden Wasserversorgung der Wurzeln und mindert das Baumwachstum, so dass junge Bäume absterben können, bevor sie richtig groß geworden sind.</p><p>Welche Regionen in Deutschland könnten besonders von Trockenheit betroffen sein? </p><p>Die Niederschlagsverteilung in Deutschland ist regional sehr unterschiedlich. So zeigen die „Normalwerte“ des Jahresniederschlags (langjähriges Mittel 1971 – 2000), dass es Regionen in Deutschland mit deutlich unter 500 mm und Regionen mit deutlich über 1000 mm Jahresniederschlag gibt. Die Gebiete mit den niedrigen Niederschlägen liegen vor allem im Osten und Nordosten Deutschlands. Regionen mit hohen Niederschlägen finden sich im Westen und Süden Deutschlands. Der zunehmende Temperaturanstieg aufgrund des globalen Klimawandels hat auch Auswirkungen auf das Niederschlagsgeschehen in Deutschland. So können sich die Jahresniederschläge bis zum Ende des Jahrhunderts mit regionalen Unterschieden um bis zu 15 % erhöhen. Betrachtet man nur die Winterniederschläge können diese sich um 5-20 % bis zur Mitte des Jahrhunderts erhöhen. Die Aussagen für die Sommerniederschläge sind bis zur Mitte des Jahrhunderts nicht eindeutig, bis zum Ende des Jahrhunderts zeigen die Modelle aber Tendenzen zu mehr Trockenheit (siehe <a href="https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html">DWD-Klimaatlas</a>, <a href="https://www.lawa.de/documents/kompaktinfos_zum_lawa_klimawandel-bericht_2020_1637921187.pdf">LAWA-Klimawandelbericht</a>).</p><p>Welche Regionen letztlich von Trockenheit besonders betroffen sind, hängt weiterhin von den Böden und der Entwicklung der <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a> ab. In Verbindung mit den Wasserbedarfen einer Region und ihrer zukünftigen Entwicklung lässt sich erkennen, wo eine Konkurrenzsituation um Wasser entstehen könnte. Vor diesem Hintergrund hat das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a>⁠) zusammen mit dem Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) 2020 das Projekt „Auswirkung des Klimawandels auf die Wasserverfügbarkeit / Anpassung an Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ in Deutschland“ (<a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a>) initiiert. Die Ergebnisse wurden 2024 veröffentlicht und verschaffen unter anderem einen Überblick über die gegenwärtige Wasserverfügbarkeit in Deutschland, sowie deren zukünftige Entwicklung unter Klimawandelbedingungen. In der Studie analysierten die Forschenden den Zeitraum von 1961 bis 2020 und erstellten eine deutschlandweite Karte der „Wasser-Bilanz-Risiko-Gebiete“, das heißt Regionen, in denen der als nachhaltig geltende Grenzwert für die Nutzung von Grundwasser überschritten wird. Das bedeutet, dass mehr Wasser entnommen wird, als auf natürliche Weise dem Grundwasser wieder zuströmt (siehe Kapitel 3.3 in <a href="https://www.umweltbundesamt.de/dokument/wadklim-zusammenfassung-der-ergebnisse">Zusammenfassung und Ergebnisse WADKlim</a>).</p><p>Besonders von Winderosion gefährdet sind die eiszeitlich geprägten Gebiete im Nordwesten, Nordosten und Osten von Deutschland (Schleswig-Holstein, weite Teile von Mecklenburg-Vorpommern, Niedersachsen, das Münsterland und Ostwestfalen-Lippe in Nordrhein-Westfalen, Sachsen-Anhalt, Brandenburg und Ost-Sachsen). Fehlt auf feinsandreichen und lehmig-sandigen Böden dann noch eine geschlossene Bodenbedeckung, kann bei Trockenheit die Winderosion angreifen. <a href="https://www.umweltbundesamt.de/publikationen/bundesweite-gefaehrdung-der-boeden-durch">Prognosen</a> zeigen, dass bis in das Jahr 2040 in allen Landschaftsräumen mit einem Anstieg der natürlichen Erosionsgefährdung durch Wind gerechnet werden muss, vor allem in den küstennahen Gebieten.</p><p>Hat eine anhaltende Trockenheit Auswirkungen auf das Grundwasser – und damit auch auf das Trinkwasser? </p><p>Grundwasser wird über den Niederschlag gespeist. Langanhaltende Trockenheit mit fehlenden Niederschlägen, reduzierter Sickerwasserrate und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a>⁠ führt zu einer veränderten Tiefenlage der Grundwasseroberfläche. So sind zum Beispiel in den trockenen Jahren 2018, 2019, 2020 und 2022 aufgrund der langanhaltenden Trockenheit in einigen Regionen die Grundwasserstände in den oberflächennahen Grundwasserleitern deutlich gefallen.</p><p>Etwa 70 Prozent des deutschen Trinkwassers stammt aus Grund- und Quellwasser. Es herrscht in Deutschland noch kein Mangel an Trinkwasser und es gibt bisher keine flächendeckenden negativen Auswirkungen auf Trinkwasser aus Grundwasserressourcen. Allerdings kam z.B. im Sommer 2018 in den besonders betroffenen Regionen die Eigenversorgung mit Trinkwasser teilweise zum Erliegen, weil Hausbrunnen trockenfielen. Wasserversorgungsunternehmen berichten für den Sommer 2018, dass es bis auf wenige -lokale Ausnahmen- keine Ausfälle bei der zentralen Wasserversorgung gab. Allerdings nutzen einer Umfrage des <a href="https://energie-wasser-praxis.de//wp-content/uploads/2023/05/ewp_1020_04-05_Inhalt.pdf">DVGW</a> zufolge 1/3 der befragten Wasserversorgungsunternehmen an den Spitzentagen ihre genehmigten Wasserressourcen zu bzw. über 90 % und bei 34 % der Wasserersorgungsunternehmen war an den Spitzentagen die Aufbereitungskapazität mit 90 % oder mehr belastet.</p><p>In Trockenperioden mit steigenden Temperaturen, erhöhter ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ und verlängerten Vegetationsphasen sind niedrige Grundwasserstände nicht nur problematisch für die Wasserentnahme zur Trinkwassergewinnung, sondern auch für flachwurzelnde Bäume und grundwasserabhängige Biotope. Des Weiteren werden Flüsse und Seen in unseren Breiten unterirdisch durch Grundwasser gespeist. Bei sinkenden Grundwasserständen verringert sich der unterirdische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ in die Oberflächengewässer, möglicherweise bis zu einer Umkehrung der Fließrichtung.</p><p>Statistisch signifikant ist der Rückgang des Grundwasserdargebots in der vergangenen Dekade 2011 – 2020, wie die Simulationen im Projekt WADKlim zeigen (siehe Kapitel 3.1 in <a href="https://www.umweltbundesamt.de/dokument/wadklim-zusammenfassung-der-ergebnisse">Zusammenfassung und Ergebnisse WADKlim</a>). Aussagen zur zukünftigen Entwicklung der jährlichen ⁠Grundwasserneubildung⁠ sind aufgrund der unsicheren Informationslage zur Niederschlagsentwicklung sowie angesichts der komplexen Wechselwirkungen mit anderen Wirkfaktoren wie Bodenart, Vegetation, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>⁠ und Flächenversiegelung weiterhin mit Unsicherheiten behaftet. Projektionen einer zukünftigen Entwicklung stellen sich je nach verwendetem Klimaszenarium unterschiedlich dar, tendenziell liegen die Zeiträume mit Trockenheit in großen Teilen Deutschlands noch eher in der Zukunft, als in der Vergangenheit. Allerdings deutet nichts darauf hin, dass in Zukunft alle Regionen Deutschlands nahezu gleichzeitig von ausgeprägten und aus klimatologischer Perspektive minimaler Grundwasserneubildung betroffen sein könnten (<a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a>).</p><p>Das Potsdam-Institut für Klimafolgenforschung (PIK) hat unter „klimafolgenonline“ (<a href="http://www.klimafolgenonline.com/">http://www.klimafolgenonline.com/</a>) Karten zur simulierten Grundwasserneubildung in Deutschland veröffentlicht.</p><p>Ist das nur ⁠Wetter⁠ oder schon ⁠Klimawandel⁠? </p><p>Die Abnahme der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ ist ein langfristiger Prozess, der vom ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst wird (siehe <a href="https://www.umweltbundesamt.de/publikationen/monitoringbericht-2023">Monitoringbericht 2023</a>). In Deutschland sind dabei vor allem Regionen mit leichtem, sandigem Boden, das heißt Teile Ostdeutschlands und das Rhein-Main-Gebiet, betroffen.</p><p>Bei Extremereignissen wie ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a>⁠ ist es schwieriger, einen Zusammenhang zum Klimawandel herzustellen: Die Zuordnung, eines Einzelereignisses zu einem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trend#alphabar">Trend</a>⁠ ist beim Klimawandel wissenschaftlich schwierig, da die „normale“ Variabilität des Wetters sehr hoch ist. Doch die gestiegene Summe an Extremereignissen, die wir in den letzten Jahren beobachten, weist deutlich auf Effekte des Klimawandels hin.&nbsp;</p><p>Bei vergangenen Hitzesommern ist ein Zusammenhang zum Klimawandel wahrscheinlich: So wurde der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2018, wie auch andere Hitzewellen in den vergangenen Jahrzehnten, z.B. 2003, <a href="https://www.pik-potsdam.de/aktuelles/pressemitteilungen/wetterextreme-im-sommer-2018-waren-verbunden-durch-stockende-riesenwellen-im-jetstream">von einem schwachen Jetstream mit stagnierenden Wellenmustern beeinflusst</a>. Ein solcher Jetstream wiederum ist eine Folge des <a href="https://www.nature.com/articles/srep45242">Erwärmens des Nordpols durch den globalen Temperaturanstieg</a>. Eine <a href="https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/">2019 veröffentlichte Untersuchung</a> zeigt den Zusammenhang zwischen Klimawandel und Rekordtemperaturen – demnach sind Hitzewellen inzwischen mindestens fünfmal wahrscheinlicher als im Jahr 1900.</p><p>Wichtig ist, die vergangenen bzw. künftigen Schäden und Umweltwirkungen durch Extremereignisse systematisch zu erfassen, um Maßnahmen zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ passgenau zu gestalten.&nbsp;</p><p>Stichwort Anpassung: Was können wir tun, um uns besser auf Trockenheit und Dürre vorzubereiten?</p><p>In der Wasserwirtschaft und der Landwirtschaft existieren vielfältige Möglichkeiten der Anpassung an Trockenheit und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠. Wichtig ist dabei, zwischen langfristigen Maßnahmen mit vorsorgendem Charakter und kurzfristigen Maßnahmen zu unterscheiden. So bietet eine an den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ angepasste Landbewirtschaftung langfristig besseren Schutz gegenüber Extremereignissen wie Hitzewellen und Trockenheit.&nbsp;</p><p>Deutsche ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassungsstrategie#alphabar">Anpassungsstrategie</a>⁠ an den Klimawandel: Im Jahr 2008 legte die Bundesregierung die Deutsche Anpassungsstrategie an den Klimawandel vor (<a href="https://www.bmu.de/download/deutsche-anpassungsstrategie-an-den-klimawandel/">DAS</a>). Diese zielt auf die Verbesserung der Anpassung an die Folgen des Klimawandels in ganz unterschiedlichen Handlungsfeldern. Seitdem wird in einem regelmäßigen <a href="https://www.umweltbundesamt.de/publikationen/monitoringbericht-2023">Monitoringbericht</a> (zuletzt 2023) dargestellt, wie sich der Klimawandel entwickelt. Mit dem <a href="https://www.bmu.de/download/zweiter-fortschrittsbericht-zur-deutschen-anpassungsstrategie-an-den-klimawandel/">Fortschrittsbericht</a> und dem Aktionsprogramm Anpassung (zuletzt 2020) werden ressortübergreifend Maßnahmen aufgezeigt. Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/neue-analyse-zeigt-risiken-der-erderhitzung-fuer">Klimawirkungs- und Risikoanalyse</a> (zuletzt 2021) analysiert die zukünftigen Folgen des Klimawandels in Deutschland und die Handlungsnotwendigkeiten in den verschiedenen Handlungsfeldern. In der im Juni 2021 veröffentlichten Studie werden für das Handlungsfeld Wasserwirtschaft, Wasserhaushalt die Klimarisiken ohne Anpassung heute, in der Mitte und am Ende des Jahrhunderts bei einem schwächeren Klimawandel als „mittel“ eingeschätzt. Bei einem stärkeren Klimawandel in der Mitte und zum Ende des Jahrhunderts werden die Klimarisiken für diesen Handlungsfeld als „hoch“ eingestuft. Durch weitreichende Anpassungsmaßnahmen lassen sich die Klimarisiken im Handlungsfeld Wasser zur Mitte des Jahrhunderts auf „gering“ bzw. „mittel“ absenken. Das bedeutet, es gibt Klimarisiken für den Wasserhaushalt und die Wasserwirtschaft, aber es gibt auch Handlungsmöglichkeiten.</p><p><u>Die Nationale Wasserstrategie</u>: Neben demografischem Wandel und Digitalisierung sind die Herausforderungen durch den Klimawandel wichtige Treiber für Veränderungen und Anpassungen der Wasserwirtschaft. Zur Unterstützung und Gestaltung dieses Prozesses hat das Bundeskabinett am 15.03.2023 die <a href="https://www.bmuv.de/wasserstrategie">Nationale Wasserstrategie</a> beschlossen. Mit der Vision <em>„Der Schutz der natürlichen Wasserressourcen und der nachhaltige Umgang mit Wasser in Zeiten des globalen Wandels sind in Deutschland in allen Lebens- und Wirtschaftsbereichen zum Wohle von Mensch und Umwelt verwirklicht“</em>. Langfristig soll der Zugang zu qualitativ hochwertigem Trinkwasser erhalten, der verantwortungsvolle Umgang mit Grund- und Oberflächengewässern auch in anderen Sektoren gewährleistet und der natürliche Wasserhaushalt und die ökologische Entwicklung unserer Gewässer unterstützt werden. In den 78 Aktionen des „Aktionsprogramms Wassers“ sind umfassende Maßnahmen enthalten, die die Anpassung der Wasserwirtschaft an den Klimawandel, aber auch andere Themenfelder, wie das Risiko der Stoffeinträge oder die Bewusstseinsbildung im Kontext Wasser voranbringen. Mit Blick auf die Anpassung an die Folgen des Klimawandels, insbesondere an Trockenheit und Dürre wird eine breite Palette an Maßnahmen vorgeschlagen. So sollen z.B. die Daten und Prognosemöglichkeiten für den Wasserhaushalt sowie das Grundwassermonitoring verbessert werden. Dies ermöglicht die frühzeitige Reaktion auf langfristige Veränderungen in den Grundwasserressourcen, aber auch die kurzfristige Steuerung von Wasserentnahmen, um eine Übernutzung unserer Wasserressourcen zu vermeiden. Es sollen Standards für Wasserversorgungskonzepte und Konzepte für die wassereffiziente Nutzung für alle Sektoren sowie den Umgang mit Wassernutzungskonflikten entwickelt und etabliert werden. Maßnahmen zur Renaturierung und für den Wasserrückhalt in der Fläche werden ebenfalls zentral vorgeschlagen. Sie leisten einen wichtigen Beitrag für einen ausgeglichenen Wasserhaushalt und helfen so den Auswirkungen von Trockenheit vorzubeugen.</p><p>Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ empfiehlt landwirtschaftliche Anpassungsmaßnahmen, die die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Resilienz#alphabar">Resilienz</a>⁠ (Robustheit) der Landwirtschaft gegen extreme Wetterbedingungen steigern. Kritisch sind aus Sicht des UBA langfristige und pauschale Subventionierungen der Landwirtschaft bei trockenheitsbedingten Ernteausfällen, da diese das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimarisiko#alphabar">Klimarisiko</a>⁠ der Landwirtschaft von der Betriebsebene auf die Gesamtgesellschaft verlagern und zur Folge haben können, dass sinnvolle Anpassungsmaßnahmen auf Betriebsebene weniger engagiert in Angriff genommen werden.</p><p>Ist die Trockenheit erst einmal da, ist es in der Regel bereits zu spät. Doch im Vorfeld sind viele Maßnahmen sinnvoll, die sich positiv auf den Wasserrückhalt auswirken, aber häufig auch positive Effekte in Hinblick auf andere Umweltgüter haben. Mulchsaat und Pflugverzicht (konservierende Bodenbearbeitung) können beispielsweise die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ reduzieren und haben weitere positive Wirkungen auf die Bodenfruchtbarkeit. Auch durch Sorten und Kulturarten, die besser mit ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Trockenstress#alphabar">Trockenstress</a>⁠ zurechtkommen, können Ertragsausfälle reduziert werden. Überhaupt kann durch eine größere Diversifizierung an angebauten Sorten und Kulturarten das Risiko starker Ernteeinbußen oder gar eines Totalausfalls deutlich reduziert werden, denn jede Kulturart hat eigene Ansprüche an die Menge und den Zeitpunkt der Wasserversorgung.&nbsp;&nbsp;Wenn bewässert wird, sollte dies bedarfsgerecht, effizient und mit möglichst geringen Verdunstungsverlusten erfolgen.</p><p>Weiterhin ist es wichtig, Wasser stärker in der Fläche, in der Landschaft zu halten. Wo es die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>⁠ ermöglicht, helfen Wiedervernässung, die Reduzierung von Entwässerungen und das Zulassen von Überschwemmungen Wasser in der Landschaft zu halten. Dieses bereitet auf trockene Perioden vor und könnte helfen, sie zu überstehen. Wenn Flächen für die Wiedervernässung von Mooren zur Verfügung gestellt werden können, hilft das dem lokalen Wasserhaushalt und Klimagase können gebunden werden. Im Projekt <a href="https://www.umweltbundesamt.de/publikationen/auswirkung-des-klimawandels-auf-die">WADKlim</a> haben die Forschenden im Auftrag des UBA einen <a href="https://www.umweltbundesamt.de/dokument/katalog-wasserrueckhalt-flaeche">Maßnahmenkatalog zum Wasserrückhalt</a> erstellt, der 69 Maßnahmen zur Erhöhung des Wasserrückhalts in der Landschaft enthält. Die Auswertung zeigt, dass die meisten Maßnahmen positive oder sehr positive Wirkungen auf die verschiedenen Ziele für den lokalen Wasserhaushalt, die Verzögerung des Abflusses, den Wasserrückhalt in Böden, die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Grundwasserneubildung#alphabar">Grundwasserneubildung</a>⁠ oder das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠ in Trockenzeiten haben.</p><p>Winderosion ist eine Herausforderung für den Bodenschutz. Gegen Winderosion bei trockener ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ helfen neben der Wahl geeigneter Fruchtfolgen Mulchsaat, Untersaaten oder Zwischenfruchtanbau, vor allem bei Kulturen mit späten Aussaatterminen wie Sommergetreide, Mais und Zuckerrübe. Bei der Bodenbearbeitung kann viel durch die Erhöhung der Oberflächenrauigkeit und eine intensive Humuswirtschaft gewonnen werden, die die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bodenfeuchte#alphabar">Bodenfeuchte</a>⁠ im Oberboden erhält.</p><p>Agroforst (d.h. landwirtschaftliche Kulturen und Baumreihen im Wechsel) wirkt ebenfalls als Schutz vor Winderosion und verbessert durch höhere Gehalte von Bodenkohlenstoff die Wasserhaltefähigkeit und das Kleinklima vor Ort.</p><p>In der Forstwirtschaft haben die zuständigen Stellen bereits seit einigen Jahren den Waldumbau begonnen, um mit angepassten Arten und der Gestaltung von Mischwäldern die Monokulturen zu reduzieren und die Resilienz (Fähigkeit des Ökosystems, auf Störungen zu reagieren) zu verbessern. So sieht die Schaffung klimarobuster Wälder im Bundesforst die stabile, strukturreiche und standortgerechte Entwicklung von Mischwäldern vor. Dies muss konsequent fortgesetzt werden.</p><p>Auch die Kommunen müssen sich an Hitze und Trockenheit anpassen. Das setzt ein neues Denken und einen Paradigmenwechsel voraus. Ein Ziel in der Stadtentwicklung und in der Wasserwirtschaft muss daher die Annäherung an die natürliche Wasserbilanz sein. Mit Hilfe naturnaher Maßnahmen wird Wasser nicht mehr abgeführt, sondern verbleibt im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Einzugsgebiet#alphabar">Einzugsgebiet</a>⁠. Mögliche Maßnahmen neben der Versickerung von Regenwasser sind die Entsiegelung befestigter Flächen, lokale grüne und blaue Infrastrukturen, wie Straßenbäume, Fassaden- und Dachbegrünungen sowie Verdunstungsmöglichkeiten von gespeichertem Regenwasser. Ferner fördern Frischluftschneisen sowie die Kühlung und Verschattung von Gebäuden und öffentlichen Räumen ein gesundes Stadtklima. Naturnahe Elemente, wie etwa Mulden-Rigolen Systeme, stärken die dezentrale Regenwasserversickerung und -verdunstung und helfen Bodenfeuchte und Grundwasserneubildung in urbanen Räumen zu erhöhen. Dies verbessert die Pflanzenversorgung in Trockenphasen und verringert Hitzeeffekte. Für Dürreperioden können darüber hinaus Bewässerungsmöglichkeiten etabliert werden, die jedoch effizient und wassersparend gestaltet sein müssen. Bei der Verwendung von Brauchwasser (z.B. Regenwasser, aufbereitetes Grauwasser (gering verschmutztes Abwasser), aufbereitetes Kommunalabwasser) zur Bewässerung von urbanen Grünflächen sind chemische und hygienische Anforderungen abzuleiten bzw. zu berücksichtigen.</p><p>Darüber hinaus wird ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ in der Städtebauförderung gestärkt, indem beispielsweise grüne Infrastrukturen wie Stadtgrün gefördert werden.</p><p>Was können Bürger*innen bei Trockenheit tun? </p><p>Die Trinkwassernutzung ist in den letzten Jahrzehnten durch ein hohes Bewusstsein bei den Bürger*innen und zum Beispiel den Einsatz von wassersparenden Armaturen und Geräten kontinuierlich zurückgegangen. So hat sich die Trinkwassernutzung im Haushalt bei etwa 129 Litern pro Person und Tag eingependelt. Wir müssen aber davon ausgehen, dass gerade in heißen und trockenen Sommern diese Werte höher liegen. Grundsätzlich sollte mit Wasser – insbesondere mit Warmwasser – sorgsam umgegangen werden. Dazu gehört, Waschmaschine und Geschirrspüler nur anzuschalten, wenn sie voll beladen sind oder das Vollbad durch eine Dusche zu ersetzen. Außerdem gilt: Alle Maßnahmen, die zu einer geringeren Verschmutzung der Gewässer beitragen, erhöhen die Wasserverfügbarkeit. Dazu tragen zum Beispiel der Kauf von Lebensmittel aus ökologischer Landwirtschaft, der Verzicht auf ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>⁠ und Bioziden in Garten und Haushalt und die ordnungsgemäße Entsorgung von Arzneimitteln bei. Weitere Tipps finden sich <u>im Flyer </u><a href="https://www.umweltbundesamt.de/publikationen/flyer-unser-wasser-unsere-verantwortung-was-kann">„Unser Wasser – unsere Verantwortung</a><u>“ und </u><a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/warmwasser">hier</a>.</p><p>An Hitzetagen ist ein angepasstes Verhalten mit entsprechender Kleidung, Aufenthalt im Schatten und ausreichendem Trinken wichtig.</p><p>Das Gießen sollte nicht bei Hitze in der Mittagszeit erfolgen, sondern am frühen Morgen oder am späten Abend – dann verdunstet das Wasser nicht so schnell. Am frühen Morgen ist es sogar besser als am späten Abend, da dann die Bodentemperaturen und folglich auch die Verluste durch Bodenevaporation (⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠) niedriger sind. Ansonsten gilt: Lieber seltener gießen und gut durchfeuchten, als häufig und wenig (im ersten Fall bilden sich die Wurzelsysteme dann auch in die Tiefe aus). Der Deutsche Wetterdienst empfiehlt regional in welchem <a href="https://www.dwd.de/DE/leistungen/bereg_interv/beregintervall.html?nn=588520#buehneTop">Intervall</a> bewässert werden sollte.</p><p>Am besten sollten nicht die Blätter, sondern direkt der Erdboden gegossen werden – dann bilden sich weniger Pilze und die Blätter riskieren nicht, durch den Lupen-Effekt zu verbrennen. Nach Möglichkeit sollte gesammelte Regenwasser zur Bewässerung von Garten und Balkonpflanzen zum Einsatz kommen. Das Gießen von Pflanzen, Bäumen, Obst und Gemüse in Haus und Garten ist die einfachste und sinnvollste Nutzung von Regenwasser. Bei anhaltender Trockenheit können Kommunen und Wasserversorgungsunternehmen weitergehende Hinweise zur Gartenbewässerung und dem Befüllen von Pools geben.</p><p>Weitere Praxistipps gibt es in den <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/regenwassernutzung">UBA-Umwelttipps für den Garten</a>.&nbsp;</p><p>Der Wert unserer Stadt- und Straßenbäume ist unschätzbar. Sie regulieren zum Beispiel das Mikroklima, spenden Schatten, filtern Emissionen aus Luft und Boden, werten das Stadtbild auf und sind Lebensraum stadttypischer Vogel- und Insektenarten. Stadtbäume wachsen meist unter schlechteren Standortbedingungen als Bäume in der Natur und leiden unter Verdichtung, Schadstoffen oder Streusalz, so dass die Folgen des Klimawandels – wie Trockenheit – sie zusätzlich belasten. Gesunde Straßenbäume sind jedoch für die Kühlung der Städte durch deren kombinierte Wirkung aus Verdunstungsleistung und Schattenwurf von besonderer Bedeutung, da sie der Aufheizung entgegenwirken.&nbsp;</p><p>Wie bei jungen Stauden und Gemüse auch, brauchen gerade junge Straßenbäume besonders viel Wasser. Ihre Wurzeln reichen meist noch nicht bis zum Grundwasserspiegel. Mittlerweile gibt es eine Reihe von Maßnahmen, um eine Wasserversorgung der jungen Bäume auch bei Trockenheit zu ermöglichen, z.B. über Baumbewässerungsbeutel oder Gießringe. Aber auch weiterhin ist Eigeninitiative gefragt. Bei länger anhaltender Trockenheit sind dabei Informationen von Kommunen und Wasserversorgungsunternehmen zu beachten, ob eine Bewässerung in Gärten und auf kommunalen Flächen mit Trinkwasser ggf. eingeschränkt ist. „Pi mal Daumen“ braucht ein Baum mindestens zehn Liter Wasser pro Tag (d.h. einen Wassereimer), idealerweise in ein bis zwei größeren Wassergaben pro Woche. Der Berliner Bezirk Friedrichshain-Kreuzberg hat beispielsweise Ende April 2019 eine Nachbarschafts-Aktion angestoßen, die Bürger*innen aufruft, beim Gießen von Straßenbäumen zu helfen.&nbsp;Ein weiteres Beispiel ist das <a href="https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/hamburgs-gruen/baeume/strassenbaeume-online">Straßenbaumkataster in Hamburg,</a> das über seine interaktive Karte das Spenden für einen Baum ermöglicht (Spenden-Aktion Mein Baum – Meine Stadt). Wie Sie den Bäumen in Ihrer Umgebung richtig helfen können, erfahren Sie mit einem Klick auf eine Initiative der Stadt Berlin mit „<a href="https://www.giessdenkiez.de/">Gieß den Kiez</a>“.</p>

Energie- und Wasserverbräuche kommunaler Schulen

In der Karte werden die Verbrauchswerte für Strom, Wärme und Wasser an den Dresdner Schulen bzw. Schulkomplexen angezeigt. Der Wärmeverbrauch ist nicht witterungsbereinigt. Das Ziel der Bereitstellung der Daten ist es, den Verbrauch öffentlicher Einrichtungen am Beispiel von Schulen mit ihrem Bedarf an Energie und Wasser zu verdeutlichen. Dies kann für den Unterricht in der Auseinandersetzung zum Thema Nachhaltigkeit von Interesse sein. Die Nutzer der Gebäude sollen damit besser in die Lage versetzt sein, sich über die Veröffentlichung von vorliegenden realen Werten mit dem ökologischen Fußabdruck einer Schule auseinanderzusetzen. Die Werte einzelner Schulen sind nur bedingt untereinander vergleichbar, da der Energieverbrauch von der Größe und Art des Gebäudes sowie der Anzahl der Schüler abhängt. Die Werte geben einen beschränkten Einblick in den Verbrauch, da sie nur je Schulareal vorliegen. Befindet sich auf einem Grundstück lediglich eine Schule, besitzen die Werte einen hohen Aussagewert zur Schule. Liegen jedoch beispielsweise zwei Schulen auf einem Grundstück oder hat eine Schule verteilte Standorten kann nur begrenzt Rückschluss auf die einzelnen Schulgebäude gezogen werden. Die Daten werden aus dem Energiemanagementsystem im Amt für Hochbau und Immobilienverwaltung der Landeshauptstadt Dresden abgerufen und stammen im Wesentlichen aus Vertragsabrechnungen mit dem Versorger sowie eigenen Zählerstand-Ablesungen. Es handelt sich bei den Verbrauchswerten für Wärme um Nutzenergie in MWh. Diese werden unabhängig vom Energieträger angegeben und somit sind z.B. Wandlungsverluste nicht abgebildet. Daten aus Vertragsabrechnungen liegen auf Grund des rollierenden Abrechnungssystems des Versorgers in der Regel 1-2 Jahre nach dem Abrechnungsjahr vor. Eigene Zählerstand-Ablesungen werden in der Regel quartalsweise in das Energiemanagementsystem eingepflegt. Eine detaillierte Aufschlüsselung der Verbräuche auf die einzelnen Gebäude kann bei Bedarf beim Sachgebiet Energie- und Wasserwirtschaft angefragt werden. Über das Open-Data-Portal der Landeshauptstadt Dresden können zudem die Rohdaten eingesehen werden. Die Datenbereitstellung wurde im Rahmen des Europäischen Projektes MAtchUP (www.dresden.de/matchup) ermöglicht.

Energie- und Wasserverbräuche kommunaler Schulen (WFS Dienst)

In der Karte werden die Verbrauchswerte für Strom, Wärme und Wasser an den Dresdner Schulen bzw. Schulkomplexen angezeigt. Der Wärmeverbrauch ist nicht witterungsbereinigt. Das Ziel der Bereitstellung der Daten ist es, den Verbrauch öffentlicher Einrichtungen am Beispiel von Schulen mit ihrem Bedarf an Energie und Wasser zu verdeutlichen. Dies kann für den Unterricht in der Auseinandersetzung zum Thema Nachhaltigkeit von Interesse sein. Die Nutzer der Gebäude sollen damit besser in die Lage versetzt sein, sich über die Veröffentlichung von vorliegenden realen Werten mit dem ökologischen Fußabdruck einer Schule auseinanderzusetzen. Die Werte einzelner Schulen sind nur bedingt untereinander vergleichbar, da der Energieverbrauch von der Größe und Art des Gebäudes sowie der Anzahl der Schüler abhängt. Die Werte geben einen beschränkten Einblick in den Verbrauch, da sie nur je Schulareal vorliegen. Befindet sich auf einem Grundstück lediglich eine Schule, besitzen die Werte einen hohen Aussagewert zur Schule. Liegen jedoch beispielsweise zwei Schulen auf einem Grundstück oder hat eine Schule verteilte Standorten kann nur begrenzt Rückschluss auf die einzelnen Schulgebäude gezogen werden. Die Daten werden aus dem Energiemanagementsystem im Amt für Hochbau und Immobilienverwaltung der Landeshauptstadt Dresden abgerufen und stammen im Wesentlichen aus Vertragsabrechnungen mit dem Versorger sowie eigenen Zählerstand-Ablesungen. Es handelt sich bei den Verbrauchswerten für Wärme um Nutzenergie in MWh. Diese werden unabhängig vom Energieträger angegeben und somit sind z.B. Wandlungsverluste nicht abgebildet. Daten aus Vertragsabrechnungen liegen auf Grund des rollierenden Abrechnungssystems des Versorgers in der Regel 1-2 Jahre nach dem Abrechnungsjahr vor. Eigene Zählerstand-Ablesungen werden in der Regel quartalsweise in das Energiemanagementsystem eingepflegt. Eine detaillierte Aufschlüsselung der Verbräuche auf die einzelnen Gebäude kann bei Bedarf beim Sachgebiet Energie- und Wasserwirtschaft angefragt werden. Über das Open-Data-Portal der Landeshauptstadt Dresden können zudem die Rohdaten eingesehen werden. Die Datenbereitstellung wurde im Rahmen des Europäischen Projektes MAtchUP (www.dresden.de/matchup) ermöglicht.

Energie- und Wasserverbräuche kommunaler Schulen (WMS Dienst)

In der Karte werden die Verbrauchswerte für Strom, Wärme und Wasser an den Dresdner Schulen bzw. Schulkomplexen angezeigt. Der Wärmeverbrauch ist nicht witterungsbereinigt. Das Ziel der Bereitstellung der Daten ist es, den Verbrauch öffentlicher Einrichtungen am Beispiel von Schulen mit ihrem Bedarf an Energie und Wasser zu verdeutlichen. Dies kann für den Unterricht in der Auseinandersetzung zum Thema Nachhaltigkeit von Interesse sein. Die Nutzer der Gebäude sollen damit besser in die Lage versetzt sein, sich über die Veröffentlichung von vorliegenden realen Werten mit dem ökologischen Fußabdruck einer Schule auseinanderzusetzen. Die Werte einzelner Schulen sind nur bedingt untereinander vergleichbar, da der Energieverbrauch von der Größe und Art des Gebäudes sowie der Anzahl der Schüler abhängt. Die Werte geben einen beschränkten Einblick in den Verbrauch, da sie nur je Schulareal vorliegen. Befindet sich auf einem Grundstück lediglich eine Schule, besitzen die Werte einen hohen Aussagewert zur Schule. Liegen jedoch beispielsweise zwei Schulen auf einem Grundstück oder hat eine Schule verteilte Standorten kann nur begrenzt Rückschluss auf die einzelnen Schulgebäude gezogen werden. Die Daten werden aus dem Energiemanagementsystem im Amt für Hochbau und Immobilienverwaltung der Landeshauptstadt Dresden abgerufen und stammen im Wesentlichen aus Vertragsabrechnungen mit dem Versorger sowie eigenen Zählerstand-Ablesungen. Es handelt sich bei den Verbrauchswerten für Wärme um Nutzenergie in MWh. Diese werden unabhängig vom Energieträger angegeben und somit sind z.B. Wandlungsverluste nicht abgebildet. Daten aus Vertragsabrechnungen liegen auf Grund des rollierenden Abrechnungssystems des Versorgers in der Regel 1-2 Jahre nach dem Abrechnungsjahr vor. Eigene Zählerstand-Ablesungen werden in der Regel quartalsweise in das Energiemanagementsystem eingepflegt. Eine detaillierte Aufschlüsselung der Verbräuche auf die einzelnen Gebäude kann bei Bedarf beim Sachgebiet Energie- und Wasserwirtschaft angefragt werden. Über das Open-Data-Portal der Landeshauptstadt Dresden können zudem die Rohdaten eingesehen werden. Die Datenbereitstellung wurde im Rahmen des Europäischen Projektes MAtchUP (www.dresden.de/matchup) ermöglicht.

1 2 3 4 5181 182 183