API src

Found 1831 results.

Related terms

Semi-airborne elektromagnetische Exploration von Aquiferen in der Kalahari, Afrika, Teilprojekt 3

EnEff:Wärme: Quartiers-Wärme-Kraft-Kälte-Kopplung, Teilvorhaben: 'Aufbau einer Groß- und Hochtemperaturwärmepumpe für die Einbindung in das Berliner Stadtwärmenetz'

EnEff:Wärme: Quartiers-Wärme-Kraft-Kälte-Kopplung, Teilvorhaben: 'Demonstration und Erprobung der Einbindung einer Groß- und Hochtemperaturwärmepumpe in das Berliner Stadtwärmenetz'

Ertüchtigung/Erweiterung Beschneiungsanlage "Blaue Rodelbahn", Hornbahn Hindelang

Anhand einer Schwachstellenanalyse wurde festgestellt, dass die Beschneiungsanlage, insbesondere Schneileitung, nicht mehr den Stand der Technik entspricht. Die Hornbahn Hindelang GmbH & Co. KG beantragt für das Jahr 2025 die Ertüchtigung/Erweiterung der Anlage für die Beschneiung der Blauen Rodelbahn am Imberger Horn. Die Schneileitung verläuft entlang bzw. im Untergrund des Wirtschaftsweges zur Hornalpe. Die Wegegemeinschaft des Wirtschaftsweges „Hornalpe“ plant ab 2026 die abschnittsweise Sanierung des Weges. Die Wegemaßnahmen können erst beginnen, wenn Maßnahmen an der Beschneiungsanlage fertiggestellt sind. Um die Geländeeingriffe auf absolutes Minimum zu reduzieren, soll der Graben für die frostsichere Schneileitung (mit Ausnahme der kurzen Strecke im oberen Bereich) ausschließlich innerhalb des Wirtschaftsweges „Hornalpe“ mittels einer Felsfräse hergestellt werden. Durch den Einsatz einer Felsfräse ist die Breite des Grabens auf 80 cm begrenzt. Ein Teil der bestehenden Zapfstellen soll an Ort und Stelle verbleiben. Die zusätzlichen 9 Zapfstellen sollen wie bisher am bergseitigen Wegrand positioniert werden. Da ein Grundstück nicht zur Verfügung steht, muss die Schneileitung auf einer Länge von ca. 90 m die Wegtrasse verlassen. Des Weiteren soll von der obersten Zapfstelle bis zur geplanten Trafostation der Bergstation Hornbahn ein Kabelgraben von rund 140 m hergestellt werden, welcher innerhalb des Weges zur Bergstation verlaufen soll. Der Flächenverbrauch ist relativ gering, da die Verlegearbeiten entlang der Bestandsstrecke geplant sind. Zudem bleibt der Wasserbedarf annähernd gleich und es kommen keine zusätzlich zu beschneienden Flächen hinzu.

Globale Abschätzung von Wassermangel in Karstregionen in Zeiten des globalen Wandels

Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.

Datengetriebene, langfristige Vorhersagen des Wasserbedarfs unter dem Einfluss des Klimawandels

Ausreichende Verfügbarkeit von Trinkwasser und entsprechende Langzeitplanung sind wesentliche Voraussetzungen für eine nachhaltige Zukunft. Dazu bedarf es verlässlicher Langzeitprognosen des zukünftigen Wasserbedarfs. Stündliche und tägliche Bedarfsprognosen mithilfe von maschinellem Lernen (ML) sind wohletabliert, sofern ausreichend Daten vorhanden sind. Dennoch gibt es einige Herausforderungen. Erstens verfügen viele lokale Wasserversorger lediglich über monatliche Bedarfsdaten. Zweitens ist das System wegen des Klimawandels und wegen sozialer, rechtlicher und wirtschaftlicher Veränderungen instationär. Drittens sind zukünftige Wetter- und Klimabedingungen sowie die genannten Wandelprozesse unsicher. Insgesamt führt dies zu hoch volatilen und unsicheren Szenarien mit begrenzten Daten, was eine große Herausforderung für Modellierung und ML-Methoden darstellt. Dennoch sollten diese Methoden breit in verschiedenen Klima- und Wirtschaftsregionen anwendbar sein, zuverlässige Vorhersagen über Jahrzehnte ermöglichen und für Experten in Planungsbüros handhabbar sein. Dieses Projekt zielt darauf ab, Langzeitprognosen des Wasserbedarfs zu verbessern, indem wir folgende vier Forschungsfragen bearbeiten: Welche ML-Modelle für datenarme Probleme beschreiben den Wasserbedarf am besten, und kann die Modellauswahl automatisiert werden? Welche erklärenden Variablen sind notwendig, und wie sind diese zukünftig verteilt? Wie können wir der variierenden Aussagekraft von Daten in instationären Problemen begegnen? Wie können wir sinnvolle Unsicherheitsintervalle für Risikobewertungen erreichen? Um diese Fragen zu beantworten, werden wir speziell für datenarme Situationen entwickelte ML-Modelle entwickeln, kombinieren und bewerten sowie deren Auswahl automatisieren. Dies umfasst auch die Auswahl der erklärenden Variablen und die Untersuchung ihrer Wahrscheinlichkeitsverteilungen. Wir werden auf zwei Zeitskalen arbeiten: kurzfristig (lokal Wetter) und langfristig (Klima). Für die kurze Zeitskala werden wir statistische Wettergeneratoren verwenden, während wir für die langfristige Skala Langzeit-Wettervorhersagen des DWD unter verschiedenen Klimaszenarien nutzen werden. Da technische, gesellschaftliche oder wirtschaftliche Veränderungen und ihre Auswirkungen auf den Wasserbedarf schwer vorhersehbar und allgemein modellierbar sind, müssen sie als exogene oder festgesetzte Variablen behandelt werden. Sie können die Aussagekraft von Daten, die unter aktuellen Bedingungen erhoben werden, beeinflussen. Daher werden wir Multi-Fidelity-Ansätze entwickeln, die aus kürzeren Zeitreihen größerer räumlicher Gebiete lernen können. Für das Projekt bauen wir auf Vorarbeiten im Bereich des Polynomiellen Chaos und der Gauß-Prozess-Regression auf. Alle Methoden werden open-source verfügbar gemacht, um Transparenz in der Bedarfsvorhersage zu fördern und somit verbesserte Vorhersagen und Entscheidungsunterstützung öffentlich verfügbar zu machen.

Entwicklung eines Konzeptes zur nachhaltigen Wasserbewirtschaftung in der Nordoase Mendoza, Argentinien

Ziel: Ziel dieser Arbeit ist es, (1) die strukturellen und oekonomischen Verhaeltnisse in der Landwirtschaft sowie die Formen und Strukturen der landwirtschaftlichen Wasserbewirtschaftung darzustellen, (2) die Entwicklung der Wasserverfuegbarkeit und des landwirtschaftlichen Wasserbedarfs zu analysieren, (3) die Entwicklung der Bereitstellung finanzieller Mittel fuer die landwirtschaftliche Wasserbewirtschaftung zu analysieren; (4) die Auswirkungen von Wasserverknappung und finanziellem Defizit fuer die Entwicklung der Landwirtschaft zu bewerten; und (5) ein Konzept zur nachhaltigen landwirtschaftlichen Wasserbewirtschaftung zu entwickeln. Methoden: Auswertung von Statistiken zu Wasserverbrauch und soziooekonomischen Verhaeltnissen in den Wirtschaftssektoren sowie den landwirtschaftlichen Sektoren und Agrarregionen der Nordoase Mendoza, Analyse von Gesetzen und Verordnungen zur Organisation und Aufgabe der Wasserbewirtschaftung, Untersuchung von Berichten und Evaluierungen vorhandener und geplanter technischer Anlagen zur Wasserbewirtschaftung und Bewaesserung, Berechnung der Wasserverknappung auf Basis von Wasserangebot, landwirtschaftlichem Wasserbedarf und Wasserverfuegbarkeit fuer die Entwicklung der Landwirtschaft.

Ressourceneffiziente Erzeugung hochwertiger Proteine und Fasern aus Schmalblättrigen Bitterlupinen für die (vegane) Humanernährung, Teilprojekt B

LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.

Ressourceneffiziente Erzeugung hochwertiger Proteine und Fasern aus Schmalblättrigen Bitterlupinen für die (vegane) Humanernährung, Teilprojekt C

LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.

Ressourceneffiziente Erzeugung hochwertiger Proteine und Fasern aus Schmalblättrigen Bitterlupinen für die (vegane) Humanernährung, Teilprojekt D

LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.

1 2 3 4 5182 183 184