Recent discussions on the path eco-hydromorphic research has followed in the past decades highlight the need for greater ecological input into this field. Traditional approaches have been criticized for being largely correlation-based (Vaughan et al., 2009) ecological black boxes (Leclerc, 2005) and strongly relying on weak, disproven and/or outdated assumptions about the dynamics of stream biota (Lancaster & Downes, 2010). In recognition of this, process-oriented research aiming at elucidating and quantifying causal mechanisms has been proposed as a promising approach, though challenging, to study the relations between flow, morphodynamics and biological populations in running waters. In terms of levels of biological organization, it has been recognized that processes determining the response of aquatic biota to hydromorphological alteration occur mainly at the population level. In this sense, relating demographic rates to flow and morphology seems to offer great potential for progress (Lancaster & Downes, 2010). Thus, tapping into existing ecological knowledge (e.g., key patch approach for habitat networks, Verboom et al. 2001; metapopulation theory, Levins 1970; Hanski & Gaggiotti 2004, landscape-scale estimations of habitat suitability and carrying capacity, Reijnen et al. 1995; Duel et al. 1995 2003; population-level viability estimations; Akçakaya 2001; resource utilization scales, ONeill et al. 1988; habitat-use patterns, Milne et al. 1989) in order to link ecology to hydromorphology at a more fundamental level constitutes an important path towards better science and management.
Fruehere Experimente der vertikalen Verteilung des Kernwaffen- (oder kuenstlich eingebrachten) Tritiums zeigten eine nur sehr langsame, geschichtete Abwaertsbewegung des Niederschlagswassers in der ungesaettigten Bodenzone. Da das Vorruecken des Tritium Tracers immer schneller als das anderer Verunreinigungen im Regenwasser ist, sind so Abschaetzungen des unguenstigsten Falles moeglich (Zivilschutz, Umweltschutz). Jetzt soll geprueft werden, inwieweit eine geschichtete Abwaertsbewegung der Grundwasserspende in der ungesaettigten Bodenzone bei starker kuenstlicher Beregnung erhalten bleibt, bzw. ab welchen Regen-Intensitaeten mit staerkerer Dispersion und Kanalbildung zu rechnen ist.
Die Wasserströmung in ungesättigten Böden erfolgt hauptsächlich vertikal entlang der abwärts oder aufwärts gerichteten Gradienten im Wasserpotenzial. Laterale Flüsse treten nur nahe Wassersättigung auf, wo die Kapillarkräfte an Bedeutung verlieren. Laterale Flüsse entlang stauender Bodenhorizonte und anderer Strukturen auf der Hangskala können auch mit hochaufgelösten, dreidimensionalen numerischen Modellen nicht realistisch beschrieben werden, da geeignete Modellkonzepte für eine prozessbasierte Beschreibung fehlen. Wesentliche Schwierigkeiten bereiten Phänomene wie das hydraulische Ungleichgewicht und die Hysterese der hydraulischen Bodeneigenschaften. Ursache für beides sind strukturelle Heterogenitäten des Bodens, die dazu führen, dass das Wasserpotenzial gegen Null geht, bevor eine vollständige Wassersättigung des Porenraums erreicht wird. Eine weitere Schwierigkeit ist der hohe Daten- und Rechenaufwand für eine 2- oder 3-dimensionale Parametrisierung zur Darstellung der hydraulisch relevanten Heterogenitäten von Bodentextur und -struktur. In diesem Projekt entwickeln wir einen neuen konzeptionellen Rahmen, um hydraulisches Ungleichgewicht einschließlich der Hysterese für die 1D vertikale Wasserdynamik physikalisch konsistent zu beschreiben. Dabei stützen wir uns auf die einzigartigen Datensätze aus dem Monitoring-System VAMOS und dem TERENO Lysimeternetzwerk SoilCan. Mit VAMOS werden seit 2013 die Wassergehalte und -potenziale in verschiedenen Böden kontinuierlich gemessen, und zwar sowohl in Lysimetern (1D) als auch im Feld (3D). Das Upscaling auf die Hangskala soll durch eine dynamische Kopplung von parallelen 1D Säulen realisiert werden, wobei die Kopplung durch die lokale Wassersättigung (Wasserpotenzial =0) gesteuert wird. Damit können Lateralflüsse auf größerer Skala mit erheblich reduzierter Modellkomplexität und geringerem Rechenaufwand beschrieben werden. Das Projekt ist in drei gekoppelte Pakete gegliedert: (1) die Entwicklung eines vereinheitlichten Konzepts zur Beschreibung von hydraulischem Ungleichgewicht und Hysterese (H.-J. Vogel), (2) die Analyse der Dynamik von Lateralflüssen (H.H. Gerke) und (3) die Implementierung und Bewertung eines dynamischen 1D-3D Modells für die Hangskala (T. Wöhling). Zur Validierung der Modellkonzepte werden Experimente im Feld und im Labor gemeinsam konzipiert und durchgeführt. Wir erwarten, dass mit den vorgeschlagenen Modellkonzepten die Lateralflüsse in überwiegend wasser-ungesättigten Böden realistisch beschrieben werden können. Damit wird eine Grundlage geschaffen, um die zeitlich variierenden Fließpfade und Transportzeiten auch auf größeren Skalen zu erfassen, was ein ungelöstes Problem für das Verständnis und die Vorhersage von Transportprozessen im Boden darstellt.
Das Ziel der Untersuchungen ist es, die Dynamik der Durchflussprozesse durch eine hydrologisch-hydraulische Modellierung vor allem im rueckgestauten Bereich der Warnow zu erfassen. Dazu ist die systematische Beobachtung und Analyse der Wasserhaushaltsgroessen notwendig. Es ist u.a. der Einfluss von Niederschlag und Verdunstung in Bezug auf das Abflussverhalten von Interesse, ebenso das Retentionsverhalten des Grundwasserleiters in Verbindung mit landwirtschaftlichen Vorflutern, Torfstichen und Seen im Nebenschluss. An den Wehren in Rostock und Buetzow werden Wasserstands-Durchfluss-Beziehungen ermittelt.
Die räumliche Variabilität von Wachstums- und Entwicklungsprozessen von Nutzpflanzenbeständen ist bisher unzureichend in der Pflanzenmodellierung berücksichtigt worden. Im Unterschied zur natürlichen Vegetation werden Ackerkulturen nicht nur von Umweltfaktoren beeinflusst, sondern auch durch eine Vielzahl von Anbaumaßnahmen. Da Umweltfaktoren und Anbaumaßnahmen räumlich (und zeitlich) variable sind, ist es notwendig, den Einfluss dieser Variabilität in der Modellierung zu berücksichtigen. Das vorgeschlagene Teilprojekt beschäftigt sich mit der Modellierung landwirtschaftlicher Kul-turpflanzen, die im Untersuchungsgebiet des SFB eine wichtige Landnutzungsform darstellen (ca. 30 Prozent der Gesamtfläche des Einzugsgebietes der Rur sind ackerbaulich genutzt). Somit füllt das vorge-schlagene Teilprojekt eine wichtige Lücke in der regionalen Modellierung von Boden-Vegetations-Atmosphärensystemen. Speziell werden Fragen der Hochskalierung von Zusammenhängen des Pflanzenwachstums sowie von CO2- und Wasserflüssen vom homogenen Teilflächenbestand zum Feld und zur Region bearbeitet. Zielstellung der ersten Phase des vorgeschlagenen Teilprojekts ist die Erfassung, Analyse und Modellierung raum-zeitlicher Muster von Wachstumsprozessen sowie CO2- und Wasserflüssen von Feldbeständen mit heterogenen Bodeneigenschaften.
Die südwestliche Ostsee ist die Schlüsselregion für den Austausch von niedrigsalinem Oberflächenwasser und höhersalinem, sauerstoffreichem Bodenwasser zwischen der eigentlichen bzw. zentralen Ostsee und dem Skagerrak/Kattegat bzw. der Nordsee. Dieses System wird durch die Richtung und Intensität der Winde bestimmt und ist damit letztendlich durch das zyklonale Wettersystem des Nordatlantiks und die Golfstromaktivität kontrolliert. Die wesentliche Intention des beantragten Projektes ist die Untersuchung der Auswirkungen von holozänen Klimavariationen auf das Ökosystem Ostsee, welche sowohl durch die Sedimentabfolge als auch durch den Fossilinhalt reflektiert werden. Hierzu ist die Untersuchung der durch unterschiedliche Wind-/ Sturm- und Niederschlagsintensität hervorgerufenen Veränderungen der Salinität, der Nährstoffflüsse und des Sauerstoffgehalts der südwestlichen Ostsee vorgesehen. Diese können anhand organisch-wandiger und kieseliger Mikrofossilien, deren morphologischen Variationen, Arten-Sukzession und der chemischen Veränderungen bei der Einbettung nachgewiesen werden. Ziel dieses Projektes ist es, die Wechselwirkung zwischen Umwelt und Phyto-/Zooplankton im Ablauf der holozänen Entwicklungsgeschichte der südwestlichen Ostsee zu erfassen. Die zu erwartenden Ergebnisse sind Grundlagen zur Differenzierung natürlicher und anthropogener Umweltveränderungen sowie Datenbasis zur Modellierung zukünftiger Umweltveränderungen durch Klimaschwankungen.
Im Rahmen des Gesamtprojekts 'Bauwerkssicherheit für Bevölkerungsschutz und kritische Infrastrukturen' des Bundesamts für Bevölkerungsschutz und Katastrophenhilfe (BBK) werden die möglichen Auswirkungen von Überflutungen infolge Starkregens auf Gebäude und kritische Infrastrukturen untersucht. Der Fokus liegt dabei auf den potenziell betroffenen, städtebaulichen Agglomerationen in Hang- und Tallagen, die weder an Fluss- noch Bachläufen liegen, sondern durch Oberflächenabfluss von Hängen, auf Straßen und austretendes Wasser aus Kanalsystemen gefährdet werden. In den letzten Jahren sind zwar einige Untersuchungen zur Erfassung und Abbildung dieses Gefahrenprozesses durchgeführt worden, die Entwicklung von geeigneten Methoden der Risikoanalyse, der Risikodarstellung in Karten und Medien sowie des Umgangs mit den Risikofolgen befindet sich aber noch in den Anfängen. Ziel der vorliegenden Untersuchung ist, das Verständnis für die auftretenden Prozesse zu verbessern und allgemein anwendbare Untersuchungsmethoden für diese Naturgefahr zu entwickeln bzw. auf Eignung und Übertragbarkeit zu testen. Weiterhin sollen verbesserte Erkenntnisse zu den schädigenden Einflüssen der Überflutungen auf die vorhandenen Gebäude und die Infrastruktur gewonnen werden. Entsprechende Vorgehensweisen zur Erfassung und Bewertung dieser Einflüsse und Schäden sind zu entwickeln und anzuwenden. In der Untersuchung werden die Niederschlags-, Strömungs- und Abflussvorgänge am Beispiel der Gemeinde Wachtberg und der Stadt Bonn im Einzugsgebiet des Mehlemer Bachs untersucht und die Auswirkungen auf die Bebauung detailliert abgebildet. Dieses Gebiet wurde am 03.07.2010 von einem heftigen Unwetterereignis mit Starkregen betroffen. Bei Erörterung der Zwischenergebnisse zu dieser Sachverständigenstudie mit anderen Behörden zeigte sich, dass die Frage der Berücksichtigung der örtlichen Kanalisationsdaten bei Starkregenuntersuchungen als sehr wichtig angesehen wird. Denn dieses relativ neue Thema der ausreichenden Kanaldimensionierung in der Siedlungswasserwirtschaft hat in den letzten Jahren aufgrund von Extremwetterereignissen und den damit verbundenen Schäden an Bedeutung zugenommen. So soll auch die Fragestellung untersucht werden, ob und wann bei Starkregen die örtliche Kanalisation überlastet wird und inwiefern dies mit dem Oberflächenabfluss zusammenwirkt.
Eine integrierte Hydrosystemmodellierung ist aufgrund verschiedener räumlicher und zeitlicher Skalen sowie der Komplexitätsstufen der beteiligten Prozesse herausfordernd. Dennoch erfordern viele hydrologische Fragestellungen eine ganzheitliche Betrachtung durch eine fundierte Prozessbeschreibung mit einer Umsetzung in Modellkonzepte. Zu diesen Fragestellungen zählen beispielsweise Risikoanalysen und Modellierungen von Sturzfluten, die sowohl hydrologische als auch hydrodynamische Prozesse beinhaltet. Das Ziel des Projekts ist die integrierte Berücksichtigung von hydrologischen, hydrogeologischen, bodenphysikalischen und hydrodynamischen Prozessen innerhalb eines einzigen Modells. Dieser neuartige Modelltyp basiert auf der numerischen Interpolationsmethodik SPH (smoothed particle hydrodynamics) in Verbindung mit innovativen Skalierungsmethoden. Im Gegensatz zu etablierten Euler basierten Methoden erfolgt die zeitliche Integration über die dynamischen Partikel und nicht über ein starres Gitter. Für hydrodynamische Fragestellungen wird die SPH Methode bereits eingesetzt, eine Einbeziehung von hydrologischen, hydrogeologischen oder bodenphysikalischen Prozessen erfolgte bisher jedoch nicht, obwohl die Methodik aufgrund der numerischen Stabilität und flexiblen Erweiterbarkeit das Potential dazu besitzt. Die Umsetzung der Prozessbeschreibungen erfolgt durch die GPU-CUDA Technik für Nvidia Grafikkarten. Die innovative dynamische Skalierung ermöglicht die Übertragbarkeit von Prozessen der Wasserbewegung auf reale hydrologische Einzugsgebiete. Diese Skalierung basiert auf Ähnlichkeits-Konzepten aus der Bodenphysik. Daten zu den Böden und der Vegetation werden in Eigenschaftsfeldern bereitgestellt, wobei die einzelnen Parameter durch Verteilungsfunktionen beschrieben werden. Die Zuordnung der Parameter zu den Partikeln durch multiple Wahrscheinlichkeiten erfolgt in Analogie zu den Variationen in natürlichen Systemen. Die Dichte und Geschwindigkeit der Partikel werden über die Eigenschaftsfelder beeinflusst, während die Partikeleigenschaften die dynamische Skalierung vorgeben. Meilenstein 1 ist ein voll funktionsfähiges Modellsystem mit einer detaillierten Prozessbeschreibung auf der Plot Skala. Berücksichtigt werden die Interaktionen des Wassers mit der Vegetationszone, der ungesättigten und gesättigten Zone. Meilenstein 2 ist auf den Transfer des Detailmodells auf größere Skalen ausgerichtet (Skalierung). Meilenstein 3 umfasst die erfolgreiche Anwendung des Modells auf der Einzugsgebietsskala samt Validierung anhand umfangreicher Beobachtungsdaten (Hühnerwasser). Nach der Validierung wird das integrierte Modellsystem für Anwendungen mit hohen Wechselwirkungen zwischen verschiedenen Prozessskalen eingesetzt. Das Ziel ist die Bereitstellung einer zuverlässigen und realistischen Grundlage in Bereichen wie Sturzfluten oder Bewässerung, um Schadenpotentiale oder den Bewässerungsbedarf zu beurteilen.
Zunehmende Gewaessereutrophierung, wobei Ursachen und Verursacher z.T. unbekannt; Ziel der Untersuchungen: Einfluss natuerlicher (geologisches Substrat/Boden und Niederschlag) und anthropogener (u.a. Landnutzung/Abwassereinleitung) Faktoren bezueglich der Eutrophierung unter besonderer Beruecksichtigung der Bodenerosion und der oberflaechennahen Wasserbewegung.
Es soll die Tiefenwassererneuerung der verschiedenen Mittelmeerbecken, die Herkunft des Ausstromwassers an der Strasse von Gibraltar und Sizilien, sowie die Ausbreitung des Mittelmeerwassers in den Ostatlantik untersucht werden. Methode: Messung von Tiefenprofilen an verschiedenen Stationen von folgenden Groessen: Temperatur, Salzgehalt, Tritium, Krypton-85, Helium-3, Silikat, Sauerstoff, Freon.