Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.
Die ökologisch begründete Mindestwasserführung (Qök) beschreibt den Mindestwasserbedarf der durchflusssensitiven Arten Makrozoobenthos und/oder Fische, der notwendig ist, um für diese biologischen Qualitätskomponenten die Bewertungsklasse 2 (gut) zu ermöglichen, wenn andere Parameter nicht dagegensprechen. Eine lang andauernde Unterschreitung dieses Abflusswertes hat mit hoher Wahrscheinlichkeit eine Zielverfehlung zur Folge.
Die Qök-Werte sind Mindestdurchflusswerte, die mittels LAWA-Fließgewässertypspezifischer Mindestwasser-Orientierungswerte (MOW in l/s*km²) und der Einzugsgebietsgröße der Gewässerabschnitte natürlicher oder erheblich veränderter Fließgewässer-OWK berechnet wurden. Für die Nachvollziehbarkeit der Berechnungen sind diese notwendigen Datengrundlagen pro Fließgewässerabschnitt mit aufgeführt.
Zusätzlich erfolgt die Angabe der von ArcEGMO modellierten quasi-natürlichen mittleren Abflüsse und mittleren Niedrigwasserabflüsse für die Zeitreihe 1991-2015. Dies ermöglicht den Vergleich der ökologisch notwendigen Mindestabflüsse mit dem simulierten hydrologisch möglichen Wasserdargebot in Niedrigwasserzeiten und dadurch – ggf. nach Vergleich mit gemessenen MNQ-Werten – die Ermittlung des ökohydrologisch begründeten Mindestabflusses (Qmin,ök) als Ausgangspunkt für die behördliche Festlegung einer WRRL-konformen Mindestwasserführung in wasserrechtlichen Verfahren.
Die ökologisch begründete Mindestwasserführung (Qök) beschreibt den Mindestwasserbedarf der durchflusssensitiven Arten Makrozoobenthos und/oder Fische, der notwendig ist, um für diese biologischen Qualitätskomponenten die Bewertungsklasse 2 (gut) zu ermöglichen, wenn andere Parameter nicht dagegensprechen. Eine lang andauernde Unterschreitung dieses Abflusswertes hat mit hoher Wahrscheinlichkeit eine Zielverfehlung zur Folge.
Die Qök-Werte sind Mindestdurchflusswerte, die mittels LAWA-Fließgewässertypspezifischer Mindestwasser-Orientierungswerte (MOW in l/s*km²) und der Einzugsgebietsgröße der Gewässerabschnitte natürlicher oder erheblich veränderter Fließgewässer-OWK berechnet wurden. Für die Nachvollziehbarkeit der Berechnungen sind diese notwendigen Datengrundlagen pro Fließgewässerabschnitt mit aufgeführt.
Zusätzlich erfolgt die Angabe der von ArcEGMO modellierten quasi-natürlichen mittleren Abflüsse und mittleren Niedrigwasserabflüsse für die Zeitreihe 1991-2015. Dies ermöglicht den Vergleich der ökologisch notwendigen Mindestabflüsse mit dem simulierten hydrologisch möglichen Wasserdargebot in Niedrigwasserzeiten und dadurch – ggf. nach Vergleich mit gemessenen MNQ-Werten – die Ermittlung des ökohydrologisch begründeten Mindestabflusses (Qmin,ök) als Ausgangspunkt für die behördliche Festlegung einer WRRL-konformen Mindestwasserführung in wasserrechtlichen Verfahren.
Es ist das wissenschaftliche Ziel der Arbeit, durch Auswertung der geologischen Daten, der geohydraulischen und geotechnischen Kennwerte, der chemischen Inhaltsstoffe, der Kenntnis der Edelgase und der Isotopendaten die Herkunft der Waesser zu klaeren. Die Ergebnisse des Forschungsvorhabens dienen als Grundlage fuer Fragen der quantitativen Bewirtschaftungsmoeglichkeiten, qualitativer Veraenderungen in Abhaengigkeit von der Bewirtschaftung, Gefahr von Verschmutzungen, Ausweisung von Heilquellenschutzgebieten und Erkundungen des Mineralwasserdargebots.
Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.
Veranlassung
Der Betrieb des ISMN an der TU Wien wurde seit seiner Implementierung im Jahr 2009 auf Projektbasis durch die Europäische Weltraumagentur (ESA) finanziert. Durch die Initiative des ICWRGC und der BfG wurde eine langfristige Finanzierung und neue Heimat des ISMN in Deutschland unter Mitwirkung des Bundesministers für Verkehr und digitale Infrastruktur a. D. Andreas Scheuer sichergestellt. Somit wurde im Jahr 2021 begonnen, den Transfer an ICWRGC/BfG vorzubereiten und neues Personal zu akquirieren. Der Transfer soll bis Ende 2022 abgeschlossen sein und der Produktionsbetrieb aufgenommen werden.
Ziele
- Das bedeutendste Ziel des ISMN ist die Bereitstellung und Dissemination von In-situ-Bodenfeuchtedaten. Diese Daten werden qualitätsgeprüft und harmonisiert frei zur Verfügung gestellt. Neben der Bereitstellung der Daten fungiert das ISMN als Langzeitarchiv für globale Bodenfeuchtedaten und konsolidiert diese in einer Datenbank. Dafür werden Daten von verschiedensten Datenanbietern mit unterschiedlichen Formaten prozessiert und in die Datenbank eingepflegt. Für einige der Daten erfolgt dies als kontinuierlicher Prozess, sodass Bodenfeuchtedaten als Fast-Echtzeitprodukt abgerufen werden können.
Bodenfeuchte ist von großer Bedeutung für die Produktivität von Pflanzen und die Gesundheit von Ökosystemen. Somit hat sie entscheidenden Einfluss auf das Wasserdargebot für die Nahrungsmittelproduktion. Zusätzlich ist die Bodenfeuchte ein wichtiger Steuerfaktor für die Partitionierung von Energie- und Wasserflüssen an der Landoberfläche.
Die Verfügbarkeit von langen Zeitreihen dieser Variable ermöglicht es Wissenschaftlern, Anwendern (z.B. Landwirte) und Entscheidungsträgern, Trends zu erkennen, den Einfluss des globalen Wandels abzuschätzen und Adaptionsstrategien zu entwickeln.
Das ISMN stellt dauerhafte, harmonisierte und qualitätsgesicherte In-situ-Bodenfeuchtemessungen frei zur Verfügung. Zu diesem Zweck akquiriert und konsolidiert es global verfügbare Bodenfeuchtedaten.
1
2
3
4
5
…
30
31
32