Es ist das wissenschaftliche Ziel der Arbeit, durch Auswertung der geologischen Daten, der geohydraulischen und geotechnischen Kennwerte, der chemischen Inhaltsstoffe, der Kenntnis der Edelgase und der Isotopendaten die Herkunft der Waesser zu klaeren. Die Ergebnisse des Forschungsvorhabens dienen als Grundlage fuer Fragen der quantitativen Bewirtschaftungsmoeglichkeiten, qualitativer Veraenderungen in Abhaengigkeit von der Bewirtschaftung, Gefahr von Verschmutzungen, Ausweisung von Heilquellenschutzgebieten und Erkundungen des Mineralwasserdargebots.
Nährstoffarme Bereiche bilden die große Mehrheit des Ozeans, aber das Schicksal der dominierenden kleinen Autotrophen in diesen Bereichen ist wenig erforscht und noch weniger verstanden. Formen kleiner als 5 mym machen die große Mehrheit der Autotrophen in nährstoffarmen Systemen aus, und Protisten sind vermutlich die Haupträuber dieser Fraktion, aber besonders im Meer ist diese Verbindung wenig erforscht. Offene, grundlegende Fragen sind: Wie viel, und mit welcher Effizienz fließt Primärproduktion der kleinen Autotrophen in höhere trophische Ebenen? Sind kleine Ciliaten im Meer genauso wichtige Konsumenten kleiner Autotropher wie im Süßwasser oder sind heterotrophe Nanoflagellaten (HNF) die Haupträuber? Sind Synechococcus und Prochlorococcus, die beiden wichtigsten Vertreter der kleinen Autotrophen, in gleichem Masse frassempfindlich? Wie wichtig ist Nährstoff-Recycling durch Protisten, um Primärproduktion zu erhalten? Das vorgeschlagene Projekt wird im Golf von Aqaba stattfinden, einem oligroptrophen Tiefseesystem nicht weit vom Labor entfernt und deshalb logistisch für experimentelle Arbeit optimal geeignet. Das Projekt ist als Zusammenarbeit mit Prof. Anton Post, Eilat, Israel geplant. Experimente werden in Jahreszeiten durchgeführt, in denen unterschiedliche Autotrophe dominieren. Dabei werden Interaktionen zwischen gesamten trophischen Ebenen innerhalb der Planktongemeinschaft aber auch zwischen Arbeiten berücksichtigt, um allgemeine Vorhersagen für oligotrophe Systeme zu machen.
Durch die Verarbeitung und Förderung von Kalisalzen sind in Thüringen große Abraum- und Rückstandshalden entstanden. Die aufgehaldeten Salze werden niederschlagsinduziert aufgelöst und gelangen in Grund- und Oberflächengewässer. Das hoch mineralisierte Infiltrationswasser breitet sich im Grundwasser als Salzfahne aus und kann in Quellen wieder zutage treten. Am Beispiel der Kalirückstandshalde Sollstedt wird die Ausbreitung der in den Untergrund eingebrachten Salzlösung untersucht. Ziel des Vorhabens ist der Erwerb von Kenntnissen über die regionalen geologischen und hydrogeologischen Verhältnisse einerseits. Andererseits im Sinne der Wasserwirtschaft, Untersuchungen der Wasserverhältnisse im Hinblick auf ihre Salinität und Wasserwegsamkeit. Im Abstromgebiet der Halde Sollstedt liegen mehrere Quellen, die stark mineralisiert sind. Die Halde Sollstedt sowie der von ihr ausgehende Salzeintrag in Oberflächen- und Grundwässer ist aufgrund der topographischen Situation und der geologischen Verhältnisse als möglicher Teilverursacher der hohen Mineralisation der Quellen einzustufen. Als weiterer möglicher Teilverursacher der Quellwasserbelastung wird eine ehemalige Hausmülldeponie, die sich im vermuteten Einzugsbereich der Quellen befindet untersucht. Geogene Ursachen, wie bisher nicht bekannte, natürliche Salzvorkommen im Untergrund sind als Weitere Ursachen der hohen Quellwassermineralisation nicht auszuschließen.
Durch den Bau und den Betrieb der Demonstrationsanlage soll der Funktionsnachweis einer neuartigen Verfahrenskombination zur Aufbereitung von Weserwasser nachgewiesen werden. Das Verfahrenskonzept besteht im wesentlichen aus einer zweistufigen Membrananlage, wobei in der ersten Stufe mit einer Ultrafiltration ungeloeste Wasserinhaltsstoffe und Bakterien abgetrennt werden sollen. Mit einem zweiten Verfahrensschritt soll das Wasser mit einer Umkehrosmose-Anlage entsalzt werden. Die derzeit hohen Kosten zur Aufbereitung von Weserwasser sollen durch den Einsatz eines modernen/innovativen Verfahrens normalisiert werden, um den Wettbewerbsnachteil gegenueber anderen Stahlerzeugern zu verringern. Die Salzfracht des in den Vorfluter abzuleitenden Abwassers wird durch den Einsatz der Membrantechnologie drastisch reduziert. Weiterhin wird der Chemikalieneinsatz drastisch gesenkt.
In diesem Vorhaben soll ein mathematisches Modell entwickelt werden, das die wichtigsten interagierenden Prozesse nachbildet. Dabei handelt es sich um die konkurrierenden Prozesse der Detritusdegradierung in den verschiedenen Schichten des Sedimentes mit unterschiedlichen Oxidationspotentialen, um die abiotischen und mikrobiologisch ablaufenden Redoxprozesse, um die physikalischen und biologisch induzierten Transportprozesse und um das microbial foodweb . Die Kreisläufe der Elemente C, 0, N, P, Si, S, Fe und Mn sollen mit ihren Massenbilanzen dargestellt werden. Das Modell besteht aus einer Reihe von partiellen Differentialgleichungen (Diffusions-Reaktionsgleichungen) für die Konzentrationen der beteiligten Stoffkomponenten. Dabei werden wir uns auf die vertikale Dimension (bis 30 cm) beschränken. Als Antrieb werden Annahmen über die zeitlich veränderlichen Oberflächenrandbedingungen (Konzentrationen im überstehenden Wasser, Eintrag durch Sedimentation usw.) benutzt. Die Arbeit synthetisiert frühere und gegenwärtig laufende Forschungsaktivitäten zu einem Gesamtbild. Es ist zu erwarten, dass dabei durchaus erhebliche Fortschritte im Verständnis auch der Einzelprozess erreicht werden, weil der Zwang zur konzeptionellen Klarheit in einem mathematischen Modell Wissenslücken und Konsistenzprobleme aufdeckt. Ein wesentliches Nebenprodukt wird die Erarbeitung einer Modellversion herausragend gut verständlicher graphischer Darstellung der Ergebnisse und einfachster Bedienung sein.
Im Rahmen der Forschungsarbeit wird die Belastung von Flüssen durch Kunststoffe und die Anlagerung von Schadstoffen an diese synthetischen Polymere untersucht. Fragestellungen sind: Welche Auswirkungen hat die Verschmutzung durch synthetische Polymere (Plastik) auf die Binnengewässer. Welche Rolle spielen dabei sich ebenfalls im Wasser befindende Schadstoffe? Reichern sich diese möglicherweise an den Polymeren an und lösen sich in Organismen wieder ab? Besonderes Augenmerk wird auf mikroskopisch kleine Kunststoffpartikel (Mikroplastik) gelegt.
Die Bestimmung der PAK im Wasser durch Duennschichtchromatographie ist wegen der unzulaenglichen Trennleistung der gebraeuchlichen Schichten unbefriedigend. Es werden deshalb Versuche zur gaschromatographischen Bestimmung der PAK durchgefuehrt.
Die gekoppelte Eliminierung und Rückgewinnung von Kupfer aus Abwassergemischen stellt ein zukünftig nur noch durch produktionsintegrierte Maßnahmen lösbares verfahrenstechnisches Problem dar, da zunehmend neben der Reinigung des Wassers auch die Wertstoffrückgewinnung und damit die ressourcenminimierte Produktion in den Vordergrund der Zielsetzung steht (Kreislaufwirtschaft). Hierbei gilt es, auf die schwierigen Reaktionsbedingungen bei kupferbelasteten Abwässern (extrem niedrige pH-Werte) und die notwendige Produktreinheit des Kupfers zu achten. Den biologischen Prozessen wurde daher bisher nur wenig Aufmerksamkeit geschenkt, obwohl gerade hier ein großes Potential zur Problemlösung bei Vermeidung der Nachteile andrer Verfahren gegeben ist. In Vorversuchen konnte gezeigt werden, dass eine solche Kupferrückgewinnung möglich wird, wenn eine gekoppelte chemische/ biochemische Redoxreaktion zur Anwendung kommt. Dem im Wasser sulfidisch gelösten Kupfer wird Eisen aus z.B. Eisenschrott zur Substitution angeboten, so dass Kupfer in reiner Form ausfällen kann (Bestandteil des hier beantragten Forschungszeitraums). Das entstehende Eisensulfat wird hierzu durch Mikroorganismen (thiobacillus ferrooxidans) oxidiert und der Gleichgewichtsreaktion entzogen. Allerdings liegen bisher keine hinreichenden Grundlagenkenntnisse zur detaillierten Beschreibung und Modellierung der dieses Verfahren bestimmenden Reaktionen und reaktionsbeeinflussenden Parameter vor. Die Erarbeitung von Auslegungskriterien sind Inhalt dieses Antrages.
Im Rahmen der Sanierung des Wasserwerkes Tettau (Lausitz) ist eine Optimierung der einzelnen Verfahrensstufen zur Trinkwasseraufbereitung erforderlich. Unsere Aufgabe ist im Wesentlichen die Erarbeitung von Grundlagen für eine technologische Planung bezüglich der Eisen- und Manganreduktion sowie die Prüfung einer Notwendigkeit der Behandlung der im Rohwasser enthaltenen organischen Inhaltsstoffe bzw. die Untersuchung ihrer Auswirkungen bei einer Desinfektion (Bildung von Desinfektionsnebenprodukten). Im Anschluss an das Projekt 'Optimierung des Verfahrenskomplexes Flockung/Sedimentation + Filtration' im letzten Jahr wurden nun entsprechend der Zielstellung 'Organische Wasserinhaltsstoffe im Rohwasser des Wasserwerkes Tettau' kleintechnische Versuche zur Entfernung von organischen Stoffen durchgeführt. Grundlage dafür waren Desinfektionsversuche mit Chlor und Chlordioxid im Labormaßstab zu Beginn des Projektes, um eine mögliche Bildung von Desinfektionsnebenprodukten (DNP) zu überprüfen. Die Vermeidung der Entstehung von DNP durch die Entfernung organischer Wasserinhaltsstoffe nach der Aufbereitungsstufe Filtration wurde in anschließenden kleintechnischen Versuchen mittels Membranverfahren (Nanofiltration und Umkehrosmose) und Aktivkohlefiltration untersucht.
Die Wechselwirkungen von solaren Strahlungsflüssen und biologischen Prozessen haben fundamentale Auswirkungen auf physikalische Prozesse, Verfügbarkeit von Nährstoffen und Primärproduktion in den oberen Ozeanschichten, sowie den Austausch von Gasen mit der atmosphärischen Grenzschicht. Durch die Absorption solarer Strahlung tragen optisch aktive Wasserinhaltsstoffe zur Erwärmung der oberflächennahen Ozeanschichten bei und beeinflussen so über die Temperaturabhängigkeit der Stoffwechselraten von marinem Phytoplankton Primärproduktion und Export von Biomasse. Aufgrund der im Vergleich mit dem offenen Ozean stärker variablen Konzentrationen von anorganischen Schwebstoffen und CDOM (coloured dissolved organic matter, im Folgenden als Gelbstoff bezeichnet) ist die Zusammensetzung der Wasserinhaltsstoffe in Küstengewässern und Schelfmeeren oftmals durch eine hohe Heterogenität gekennzeichnet. Die Bildung von Gelbstoff und Änderungen in dessen Zusammensetzung aufgrund nicht-konservativer Prozesse hängen dabei in hohem Maße von der Lichtverfügbarkeit, weiterer Umweltbedingungen sowie der Zusammensetzung des Phytoplanktons ab. Darüber hinaus haben heterogene Verteilungen von Phytoplanktonpigmenten und anderen Wasserinhaltsstoffen Auswirkungen auf sub-mesoskalige vertikale Mischungsprozesse und advektive Flüsse, und damit auch auf Wassertemperatur und dichte, sowie das oberflächennahe Nährstoffangebot. Ein gutes Verständnis der Energieflüsse an der Ozeanoberfläche und in den oberen Ozeanschichten sowie deren Auswirkungen auf den Wärmehaushalt in Küstengewässern und Schelfmeeren ist von großer Bedeutung für die Modellierung des regionalen ozeanischen Klimas. Das vorgeschlagene Projekt hat zum Ziel, den Beitrag von optisch aktiven Wasserinhaltsstoffen (einschließlich Phytoplankton, Gelbstoff und anorganischen Schwebstoffen) zu den Energieflüssen in den oberen Ozeanschichten und durch die Ozeanoberfläche hindurch zu quantifizieren. Es soll untersucht werden, inwieweit die heterogene Verteilung von Wasserinhaltsstoffen die sub-mesoskaligen vertikalen turbulenten Austauschvorgänge und advektiven Flüsse beeinflusst, und inwieweit die Lichtattenuation durch Gelbstoff Auswirkungen auf die Zusammensetzung des Phytoplanktons hat. Zu diesem Zweck soll ein gekoppeltes Atmosphäre Ozean Zirkulationsmodell mit integriertem bio-optischem Modul synchron mit einem Atmosphäre Ozean Strahlungstransportmodell betrieben werden, so dass Erwärmungsraten aufgrund hochvariabler Konzentrationen von optisch aktiven Inhaltsstoffen mit hoher Genauigkeit berechnet, und so deren Auswirkungen auf die biophysikalischen Prozesse im Ozean analysiert werden können.