Mecklenburg-Vorpommern ist ein gewässerreiches, aber durchaus nicht wasserreiches Land, geprägt durch seine Küstengewässer, seine Flüsse und zahlreichen Seen. Die Gewässer als Bestandteil des Naturhaushaltes und als Lebensgrundlage für Menschen, Tiere und Pflanzen sind zu schützen und zu pflegen, ihre biologische Eigenart und Vielfalt sowie ihre wasserwirtschaftliche Funktionsfähigkeit sind zu erhalten, zu verbessern oder wiederherzustellen. Schwerpunktaufgaben sind deshalb: - Erarbeitung von Grundlagen sowie die Koordinierung von Grundlagenarbeiten der Wassermengen- und -gütewirtschaft, des Schutzes, der Sanierung und der Wiederherstellung der ökologischen Funktionsfähigkeit von Gewässern - Landesweite wasserwirtschaftliche Fachplanungen - Planung und Koordinierung der Mengen- und Beschaffenheitsüberwachung der Gewässer - Sonderuntersuchungen zur Beschaffenheit der Gewässer - Erfassung, Sammlung, Auswertung und Bewertung wasserwirtschaftlicher Daten des Landes - Veröffentlichung gewässerkundlicher Daten, z.B. im Gewässerkundlichen Jahrbuch, in Gewässergüteberichten - Aufgaben beim Vollzug des Landeswassergesetzes
Das Dezernat Gewässergüte, Binnen-, Küstengewässer und Grundwasser ist eine Organisationseinheit des LUNG M-V, Abteilung Wasser. Schwerpunktaufgaben sind: - Güteüberwachung der Fließ- und Küstengewässer sowie des Grundwassers - Haltung und Pflege der Wassergütedaten in den Datenbanken Fließgewässer, Küstengewässer und Grundwasser - Datenbereitstellung und Berichterstattungen an den Bund und die Europäische Union gemäß den gesetzlichen Erfordernissen - Schaffung naturwissenschaftlicher Grundlagen der Gewässergütewirtschaft (Aus- und Bewertung der Daten) - Erstellung von Berichten zur Beschaffenheit der Gewässer und des Grundwassers (z.B. Gewässergütebericht).
Betrieb des qualitativen Landesgrundwassermeßnetzes.
Betrieb des qualitativen Landesgrundwassermeßnetzes.
Betrieb des qualitativen Landesgrundwassermeßnetzes.
Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using recirculation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge recirculation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/recirculation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale "fresh" PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aim was to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). © 2018 Elsevier Ltd. All rights reserved.
Certain persistent and polar substances may pose a hazard to drinking water resources. To foster the knowledge exchange in this field the Working Group Environmental Monitoring of the German Chemical Society (GDCh) Division Environmental Chemistry and Ecotoxicology discussed at their meeting in December 2018 the significance and relevance of persistent, mobile and toxic chemicals (PMT substances) in the environment. Five oral contributions highlighted not only various aspects such as the identification of potential PMT substances based on certain properties and their possible regulation under the European REACH regulation, but also current developments in the analysis of PMT substances and results from environmental monitoring. The data presented prove that many persistent and mobile substances can be detected in surface waters. Once detected, it can be complex and costly to identify sources and reduce inputs, as a case study on 1,4-dioxane in Bavarian surface waters shows. The same applies to the removal of polar substances from raw water for drinking water production. Today, scientific advances in analytical methods make it easier to identify and quantify even very polar substances in water samples. In addition to the targeted analysis of critical chemicals, non-target screening is playing an increasingly important role. This opens up the possibility of detecting substances in water samples that have not previously been investigated in routine monitoring and testing their relevance for humans and the environment. However, the list of potentially occurring PM substances that have not yet been investigated is still very long. Further methodological improvements seem necessary here. In view of the evidence for the presence of PMT substances in the environment (e.g., trifluoroacetic acid and 1,4-dioxane) and the potential risks for drinking water abstraction, it seems important under consideration of the precautionary principle to identify and prioritise relevant REACH-registered substances. The assessment should be based on the intrinsic properties and the emission potential of the compounds. The implementation of a detailed proposal made at European level to regulate PMT and very persistent and very mobile (vPvM) substances in the context of REACH would ensure that chemicals identified as being substances of very high concern according to the PMT and vPvM criteria are subject to authorisation in future. © The Author(s) 2020
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides 10-day maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides daily maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides seasonal maps.
Origin | Count |
---|---|
Bund | 973 |
Land | 23 |
Type | Count |
---|---|
Förderprogramm | 956 |
Text | 12 |
unbekannt | 17 |
License | Count |
---|---|
geschlossen | 18 |
offen | 956 |
unbekannt | 11 |
Language | Count |
---|---|
Deutsch | 977 |
Englisch | 114 |
unbekannt | 2 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 6 |
Keine | 677 |
Webseite | 303 |
Topic | Count |
---|---|
Boden | 711 |
Lebewesen & Lebensräume | 769 |
Luft | 575 |
Mensch & Umwelt | 985 |
Wasser | 923 |
Weitere | 982 |